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Probability Theory Refresher
Set of events is exhaustive if they cover the entire sample space.
Events are mutually exclusive if they cannot co-occur.

Conditional probability

Statistical independence

Theorem of total probability

Random variables and their moments
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Stochastic Process
A family of random variables {X (t)} each with the same set of possible
values.

Classification on state space:
• Discrete;
• Continuous;

Classification on time:
• Discrete;
• Continuous;

Classification on the nature of the joint probability distribution function.
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Markov Chains
Markov property:

P(X (t) = j |X (tn) = in, . . . ,X (0) = i0) = P(X (t) = j |X (tn) = in)

A Markov chain is homogeneous iff:

P(X (t + s) = j |X (u + s) = i) = P(X (t) = j |X (u) = i)
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Discrete Time Markov Chains

One-step transition probabilities

m-step transition probabilities

Chapman-Kolmogorov equations for DTMC

Formal Methods in Algorithmic Cheminformatics and Systems Biology 5/16



Time-Based State Distribution
Probability of being in a state j at time (step) m.
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Structural Classifications of Markov Chains
Two states communicate iff there exist directed paths between them.

The class of a state i is the set of all states which communicate with i .

A Markov chain is irreducible if it consists of a single class.

A class C is transient if there exists a non-zero one-step transition
probability leading out of C .

A class C is ergodic if any path starting in C , remains in C .
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Recurrence Classification of Markov Chains
Let fj(m) be the probability of leaving a state j and first returning in m
steps. Then the probability of ever returning to j is:

fj =
∞∑

m=1
fj(m)

The state j is:
• Transient if fj < 1;
• Recurrent if fj = 1;
• Periodic if the return is only possible at steps ν, 2ν, 3ν, . . . where ν

is the largest such integer;

Additionally, a recurrent state can be:
• null recurrent if Mj = ∞;
• positive (non-null) recurrent if Mj < ∞;
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Steady State Distribution
In an irreducible DTMC, all states are:

• transient;
• null recurrent;
• positive recurrent;

And if periodic, then all states have the same period.

In an irreducible, aperiodic (and homogeneous) MC, the limit
probabilities exist, are independent of the initial distribution and:

• all states are, either, transient or null recurrent and ∀j ∈ S, πj = 0
(there exists no steady state distribution);

• all states are positive recurrent and ∀j ∈ S, πj = 1
Mj

;
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Absorbing Chains
Order the states so that the absorbing states are first, followed by the
transient ones.
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Time before absorption
Starting from state i , let vij be the number of visits to state j before an
absorbing state is reached.
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Continuous-time Markov Chains

Chapman-Kolmogorov equations for CTMC
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Time-Based State Distribution (CTMC)
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Steady State Distribution (CTMC)
The limit probabilities and the steady state distribution exist if the
CTMC is irreducible, positive recurrent (and homogeneous).
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Embedded DTMC
A CTMC might reimagined as a DTMC in which the transitions don’t
happen at equal “unit” intervals, but rather ones sampled from an
exponential distribution.
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Stochastic Petri Nets
A stochastic Petri net is composed of a Petri net (N,M0) and a
collection Λ = (λ1, . . . , λm) of, possibly marking dependent, transition
rates of each transition ti ∈ |T |.
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