Simulation

Juri Kolčák

Simulation as an Analysis Method

"Execution of the model", which results in a "sample of the possible behaviour".

Any model type can be simulated.

- X. Deterministic and Discrete; -> Entire reachable space
- V = Deterministic and Continuous; → Numerical simulations

Monte Carlo Method

Repeated sampling of a random variable.

Kinetic Monte Carlo method for stochastic processes (evolution in time).

Gillespie Algorithm

First described by Joseph Doob (1945).

Reinvented and popularised by Daniel Gillespie (1975).

Statistically correct solutions of a stochastic system with known transition rates.

Key assumptions:

The transition rates are statistically independent.

The stochastic system is Markovian.

1. Unitialise
$$t = t_0$$
 and $x = x_0$
2. If $(t_1 \times)$ satisfies whetever stopping criterion: exit
3. evaluate $\lambda_i(x)$ and the $\sum_{i=1}^{i=1} \lambda_i(x) = \lambda_i(x)$
Formal Methods in Algorithmic Cheminformatics and Systems Biology SS 4/7
9x i (M) -9xxx
4. compute \mathcal{T} and $j = index of the transition
10. in the two variables $r_1 r' \in [0, 1]$ unitornly
 $T = \frac{1}{\lambda} ln\left(\frac{1}{r}\right)$ $j = \min_{j \in \mathcal{U}(r, r^2)} \left(\sum_{\lambda_i(x)}^{j} \lambda_i(x) > r' \lambda\right)$
5. Set $t \in t \neq \mathcal{T}$ and $\times t \times t \neq \mathcal{V}_j$ soffect of transition
6. Return to step $(2, j)$$

Optimisations

First-reaction method.

$$\begin{aligned} r_{11} & \dots & |r_m \in [0, 1] \text{ uniFormly} \\ \forall k \in S_{1, \dots, m} \quad T_k = \frac{1}{\lambda_k(x)} \cdot \ln\left(\frac{1}{r_k}\right) \quad T = \min\left(T_k\right) \\ j = index \text{ of } \end{aligned}$$

First-family method.

$$Y_{1} \cdots |Y_{l+1} \in [0_{l}1] \text{ uniformly}$$

$$\forall h \in [1_{l-1}l] \quad T_{L} = \frac{1}{\sum_{i_{k}=1}^{m_{L}} \lambda_{i_{k}}(x)} \cdot \left(n\left(\frac{1}{r_{k}}\right) \quad \mathcal{T} = \lim_{L \in [1_{l}-1]} \left(T_{L}\right)$$

$$j = \lim_{i_{k}=1}^{m_{L}} \sum_{i_{k}=1}^{m_{L}} \lambda_{i_{k}}(x) > r_{l+1}\lambda_{i_{k}}$$

Formal Methods in Algorithmic Cheminformatics and Systems Biology

au-leaping

Let τ be the such that $\forall i \in 1, ..., m, \lambda_1(\mathbf{x})$ remain essentially constant over the interval $[t, t + \tau]$.

The number of times a transitionifives
in the interval (titr) is given by a
random variable distributed with Poisson dist.
and both mean and varia are
$$\lambda_i(x)$$
. T

$$X(t+\tau) \simeq x + \sum_{i=1}^{m} P(\lambda_i(x)\tau) v_i$$
 y net during e
caused by transitioni
supply from the Poisson dist.

Mass Action Kinetics

Chemical Reaction Networks.

Assuming:

- The mixture of chemical species is well mixed.
- The system is spatially confined.
- External factors are in an equilibrium.

$$\frac{d \lambda_{i}(x)}{dt} \stackrel{a}{=} probability of r_{i} occurring in x=X.ti
within the next intinitesmal internal
[t_{1} t+at]
each reaction risks n "base propensity" c_{i}
$$\frac{d c_{i}}{dt} \implies \text{The probability that reaction occurs in the}
infinitesmal internal given that all readants
Formal Methods in Algorithmic Cheminformatics and Systems Biology
inset". 7/7
nh: molecular reactions: $\lambda_{i}(x) = c_{i}.x_{j}$ j is the
biomolecular reactions: $j \neq h$ are the reactants,
 $\lambda_{i}(x) = c_{i}-x_{j}.x_{k}$
j reacts with itself
 $\lambda_{i}(x) = c_{i}\frac{x_{j}(x_{j}-1)}{2}$$$$$