Petri Nets
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Brief History

Introduced in 1962 by Carl Adam Petri.

Introduced as a model of concurrency in the setting of parallel and
distributed computing.

Biological and chemical systems are very often inherently concurrent.
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Definition = Sy n o

A directed bipartite graph with round vertices (places) and square
vertices (transitions).

The edges (arcs) are labelled by a weight function.
The places may contain tokens, representing available resources.

The distribution of tokens over all places constitutes a marking.
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Definition —Seman s

A transition is enabled in a marking, if each of the input places has at
least as many tokens as indicated by the arc weights.

An enabled transition may fire, removing tokens from the source places
and producing tokens in the target places, according to the weight

function.
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Reachability

A sequence of transitions which can be fired in order is called a firing
sequence.

A marking is reachable, if there exists a firing sequence producing it.
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Reachability graph
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Coverability graph
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Boundedness

A Petri net is k-bounded if in every reachable marking, the number of
tokens in every place is at most k.

A Petri net is bounded if it k-bounded for some k € N.

1-bounded Petri nets are also known as (1-)safe Petri nets.
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Deadlocks

Deadlock is a marking that enables no transitions.

A Petri net is deadlock-free if no reachable marking is a deadlock.
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Liveness

A Petri net is live if no firing sequence permanently disables any
transition.
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Complexity

Petri net problems are EXPSPACE-hard.
Coverability and Boundedness are EXPSPACE-complete.

Reachability, Deadlock-freedom and liveness are non-elementary.

Safe Petri net problems are PSPACE-complete.
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Static Analysis

A Petri net (structure) can be represented by an incidence matrix
recording the tokens consumed and produced by each transition.

The results of a firing sequence can be obtained as matrix multiplication.
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Place invariants

A P-invariant defines a linear combination of the numbers of tokens in
places which is invariant.
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Transition invariants

A T-invariant defines a firing sequence that restores the original marking.
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Siphons and Traps

A siphon is a set of places that can only gain tokens if it also loses
tokens.
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A trap is a set of places that can only lose tokens if it also gains tokens.
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Extensions

= Capacities;

= Inhibitor arcs; .[ = Tx F
= Read arcs; lz < T;z P
= Timed Petrinets; T T — N
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= Stochastic Petri nets;

= Continuous Petri nets; A~ ODE;
= Hybrid Petri nets;

= Fuzzy Petri nets;

= Coloured Petri nets.
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