Kappa

Juri Kolčák

Formal Languages

Formal languages are defined on strings, but the same **rule-based transformation** approach can be applied to different structures.

Formal Methods in Algorithmic Cheminformatics and Systems Biology

2/9

Kappa

Kappa is a relatively young method, although graph transformation itself is much older. 21st cen. ~ 2010 ~1973

Applied to a special category of graphs, called site graphs.

3/9

.

Formal Methods in Algorithmic Cheminformatics and Systems Biology

Type Graph signature / contact map

Effectively the "alphabet" of the model, specifying all types of nodes (agents), their interaction sites, activation and binding states.

Patterns

A pattern is a site graph for which the unique function mapping the pattern into the type graph is a homomorphism.

Patterns can also map into each other, these mappings are called **embeddings**.

The maximal, fully specified, patterns in which all nodes specify all the interaction sites given by the type graph, and each interaction site specifies a binding state as well as an activation state if the type graph specifies any activation states for said site, as called **complexes** and make up the states of the model.

Rules

A rule is defined as a left and right pattern, with an implicit identity of the nodes between the two patterns.

A rule application consists of embedding the left pattern in a complex and then replacing it with the right pattern, thus creating a new complex.

Formal Methods in Algorithmic Cheminformatics and Systems Biology

Semantics

The underlying expanded network is the "explicit" representation of graph transformation model semantics.

In principle, there are multiple ways to interpret a Kappa model:

Qualitative;

Differential;

Simulation

In a given state, all embeddings of all rules give the possible transitions. The rates are specified per rule.

E) & for SSA

The states are generally much larger than left patterns of the rule. It is inefficient to recompute all the embeddings after each rule application.

Static Analysis

Identify (non-)reachability of a pattern without expanding the space.

