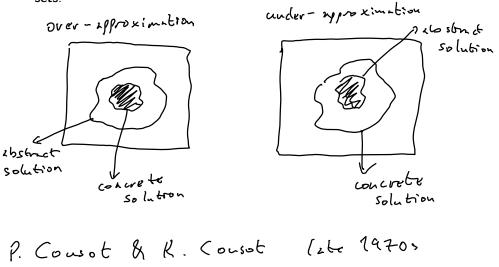
Abstract Interpretation

Juri Kolčák

Wednesday $8^{\rm th}$ January, 2025

Intuition

Sound approximation based on monotonic functions over ordered sets.



Abstraction

Įεs

Transition system $\tau = (S, I, T)$. $T \leq S \leq S$

A partial trace of length $n \in \mathbb{N}$ is a sequence of states $\sigma = (s_1, s_2, \dots, s_n)$ s, $\forall i \in \{1, \dots, n-1\}, (s_i, s_{i+1}) \in T$.

Let $\boldsymbol{\Sigma}$ denote the set of all partial traces.

abstruction
$$\begin{cases} \alpha: \mathcal{P}(\Sigma) \to \mathcal{P}(S^2) \\ \alpha: X \mapsto \{\alpha'(x) \mid x \in X\} \\ \alpha': \Sigma \to S^2 \\ \alpha': (s_1, s_2, \dots, s_n) \mapsto (s_1, s_n) \end{cases}$$

Formal Methods in Algorithmic Cheminformatics and Systems Biology

Concretisation

 $\gamma: \mathcal{P}(S^2) \to \mathcal{P}(\Sigma)$ $\gamma \colon \mathbf{Y} \mapsto \{\sigma | \alpha'(\sigma) \in \mathbf{Y}\}$

 $X \leq \gamma \sim (X)$

Galois Connection

Let (C, \leq_C) and (A, \leq_A) be partially ordered sets. Then a pair of total monotonic functions $\alpha: C \to A$ and $\gamma: A \to C$ is a Galois connection if and only if for all $c \in C$ and $a \in A$, $\alpha(c) \leq_A a \iff c \leq_C \gamma(a)$.

$$\forall c \in (, c \leq c' =) \propto (c) \leq \varkappa (c') \in \mathcal{J}_{onoton:c}$$

An abstraction defined by the means of a Galois connection is always sound.

$$\alpha(c) \leq \alpha(c) \subset \Rightarrow c \neq \gamma \circ \alpha(c)$$

$$x = p(x) \leq 2x$$

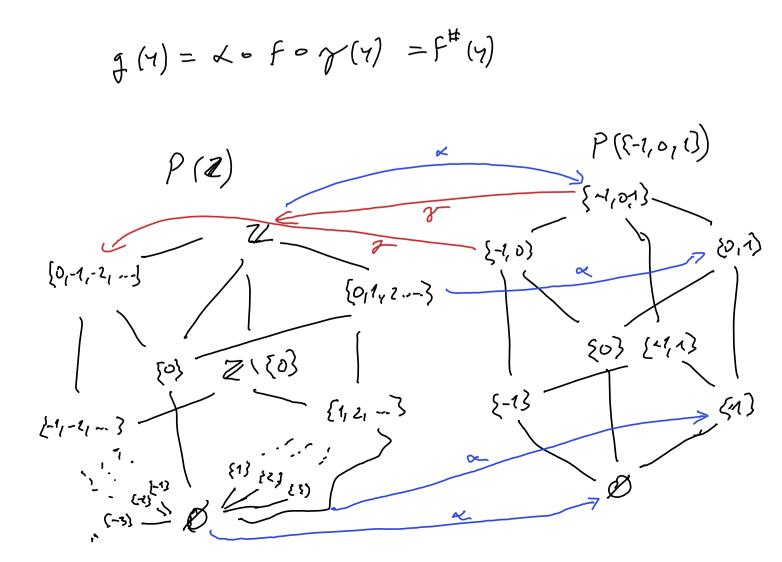
Galois Connections for Complete Lattices

C, A and Complete lattice

$$\forall D \leq C$$
, $\exists d_1 \vec{d} \leq C$ such that $\Lambda D = d$ and $\forall D = \vec{d}$
 α uniquely determines γ and vice versa.
 $\alpha(\chi) = \Lambda \{\chi \in A \mid \chi \leq \gamma(\chi)\}$
 $f(\chi) = \bigvee \{\chi \in C \mid \alpha(\chi) \leq \gamma\}$
 α preserves joins and γ preserves meets.
 $\alpha(VX) = \bigvee \{\chi \in C \mid \alpha(\chi) \leq \gamma\}$
Galois connections are closed under composition and product.
 $C \geq D \approx E$
 $C \leq C \cap D \leq \gamma(\chi) \mid \chi \in \chi\}$
Galois connections are closed under composition and product.
 $C \geq D \approx E$
 $C \leq \gamma(\chi) \mid \chi \in \chi$
 α and γ define the best abstraction of monotonic functions.
 $f: C \rightarrow C$ be an one torus function
then $f^{H}: A \rightarrow A$ defined as $f^{H} = K = f = f$ is
 $H_{1} = L_{1} \times L_{1} \times L_{2} \times L_{2}$

Formal Methods in Algorithmic Cheminformatics and Systems Biology

F# = x of op is the best abstraction of F: cmc g: A -> A be a sound approximation of t $f(x) \leq \gamma \circ q \circ x(x)$ $\alpha(x) \leq y$ $x \in \mathcal{F} \circ \mathcal{K}(x) \leq \gamma(Y)$ $x \circ f(x) \leq x \circ f \circ f(y) \leq g(y)$ $\alpha \circ f(x) \neq g(y)$ Let's assume q is the most precise ("best") $g(y) = \bigvee \{ x = t(x) \mid x(x) \leq y \}$ g(Y) = x (V EF(*) (~(*) ≤ y}) $V \{H(x) \mid x(x) \leq y\} \leq f(V \{x \mid x(x) \leq y\})$ $x \circ g'(y) = y \Rightarrow f(y) \in \{x(x(x) \leq y\}$ $F \circ \gamma(\gamma) \leq \bigvee \{F(x) \mid \alpha(x) \leq \gamma\} = f(\bigvee \{x \mid \alpha(x) \leq \gamma\})$ Assume JxEC such but x(x) 2x0 p(1) $\propto(x) \neq y$ $x \geq g(y)$ $\gamma \circ \kappa(x) \leq f(y) \leq x$ XEJOX(X) $\gamma(y) = \sqrt{\{x \mid x(x) \in y\}}$ $F \circ \gamma(\gamma) = V \{ f(x) \mid x(x) \leq \gamma \} = f (V \{ x \mid x(x) \leq \gamma \})$



Closures

- A function $\rho: C \to C$ is a **closure map** if and only if it is
 - 1 monotonic, $\forall c, c' \in C, c \leq c' \Longrightarrow \rho(c) \leq \rho(c');$
 - 2 extensive, $\forall c \in C, c \leq
 ho(c)$;
 - 3 idempotent, $\rho \circ \rho = \rho$;

Very offen & is surjective
Then pox: C > C is a closure map
Given a closure map
$$g: C \to C$$

then $C \stackrel{id}{\to} f(C)$ is a Galois connection

Moore Families

 $M \subseteq C$ is a Moore family \iff for all $S \subseteq M$, $\bigwedge S \in M$

Power Sets and Properties as Relations

Let $C = \mathcal{P}(D)$ for some set D and $R \subseteq D \times A$ a relation. Then R defines a Galois connection between C and A if it satisfies the following properties

1 For all $a, a' \in A$ and $d \in D$, $(d, a) \in R \land a \leq a' \Longrightarrow (d, a') \in R$;

2 For all
$$d \in D$$
, $(d, \bigwedge \{a \mid (d, a) \in R\}) \in R$;

$$\gamma(z) = \{d \in D\} (d, z) \in R\}$$

 $\gamma(A)$ is Π oors family

(d, x) ER =>"d has n property h"