Transitions Systems

Juri Kolčák

Friday 14th November, 2025

The semantics of a Boolean network f of dimension n are given by the transition system $\left(S=\mathbb{B}^n, \underset{f}{\longrightarrow}\right)$.

The transition system gives rise to a directed graph (V, E) where $V = S = \mathbb{B}^n$ and $E \subseteq V \times V = \xrightarrow{f}$.

The semantics of a Boolean network f of dimension n are given by the transition system $\left(S = \mathbb{B}^n, \underset{f}{\longrightarrow}\right)$.

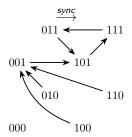
The transition system gives rise to a directed graph (V, E) where $V = S = \mathbb{B}^n$ and $E \subseteq V \times V = \xrightarrow{f}$.

$$f_1(\mathbf{x}) = \mathbf{x}_3 \wedge (\neg \mathbf{x}_1 \vee \neg \mathbf{x}_2), \ f_2(\mathbf{x}) = \mathbf{x}_1 \wedge \mathbf{x}_3, \ f_3(\mathbf{x}) = \mathbf{x}_1 \vee \mathbf{x}_2 \vee \mathbf{x}_3$$

The semantics of a Boolean network f of dimension n are given by the transition system $\left(S=\mathbb{B}^n, \underset{f}{\longrightarrow}\right)$.

The transition system gives rise to a directed graph (V, E) where $V = S = \mathbb{B}^n$ and $E \subseteq V \times V = \xrightarrow{f}$.

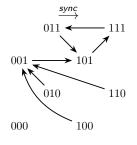
$$f_1(\mathbf{x}) = \mathbf{x}_3 \wedge (\neg \mathbf{x}_1 \vee \neg \mathbf{x}_2), \ f_2(\mathbf{x}) = \mathbf{x}_1 \wedge \mathbf{x}_3, \ f_3(\mathbf{x}) = \mathbf{x}_1 \vee \mathbf{x}_2 \vee \mathbf{x}_3$$

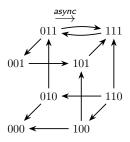


The semantics of a Boolean network f of dimension n are given by the transition system $\left(S=\mathbb{B}^n, \underset{f}{\longrightarrow}\right)$.

The transition system gives rise to a directed graph (V, E) where $V = S = \mathbb{B}^n$ and $E \subseteq V \times V = \xrightarrow{f}$.

$$f_1(\mathbf{x}) = \mathbf{x}_3 \wedge (\neg \mathbf{x}_1 \vee \neg \mathbf{x}_2), \ f_2(\mathbf{x}) = \mathbf{x}_1 \wedge \mathbf{x}_3, \ f_3(\mathbf{x}) = \mathbf{x}_1 \vee \mathbf{x}_2 \vee \mathbf{x}_3$$

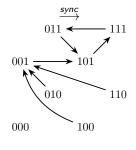


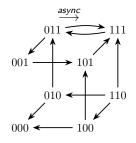


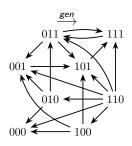
The semantics of a Boolean network f of dimension n are given by the transition system $\left(S=\mathbb{B}^n, \underset{f}{\longrightarrow}\right)$.

The transition system gives rise to a directed graph (V, E) where $V = S = \mathbb{B}^n$ and $E \subseteq V \times V = \xrightarrow{f}$.

$$f_1(\mathbf{x}) = \mathbf{x}_3 \wedge (\neg \mathbf{x}_1 \vee \neg \mathbf{x}_2), \ f_2(\mathbf{x}) = \mathbf{x}_1 \wedge \mathbf{x}_3, \ f_3(\mathbf{x}) = \mathbf{x}_1 \vee \mathbf{x}_2 \vee \mathbf{x}_3$$







Reachability

A trace $\sigma = (\mathbf{x}^0, \mathbf{x}^1, \mathbf{x}^2, \dots)$ is an (infinite) sequence of configurations such that for all k > 0, $\mathbf{x}^{k-1} \to \mathbf{x}^k$.

We often write $\sigma = \mathbf{x}^0 o \mathbf{x}^1 o \mathbf{x}^2 o \dots$

Each trace represents a possible behaviour of the model, starting from the **initial state** \mathbf{x}^0 .

A configuration \mathbf{y} is **reachable** from \mathbf{x} if and only if there exists a trace $\sigma = (\mathbf{x} = \mathbf{x}^0, \mathbf{x}^1, \mathbf{x}^2, \dots)$ and an integer $k \ge 0$ such that $\mathbf{x}^k = \mathbf{y}$.

Reachability

A trace $\sigma = (\mathbf{x}^0, \mathbf{x}^1, \mathbf{x}^2, \dots)$ is an (infinite) sequence of configurations such that for all k > 0, $\mathbf{x}^{k-1} \to \mathbf{x}^k$.

We often write $\sigma = \mathbf{x}^0 \to \mathbf{x}^1 \to \mathbf{x}^2 \to \dots$

Each trace represents a possible behaviour of the model, starting from the **initial state** \mathbf{x}^0 .

A configuration \mathbf{y} is **reachable** from \mathbf{x} if and only if there exists a trace $\sigma = (\mathbf{x} = \mathbf{x}^0, \mathbf{x}^1, \mathbf{x}^2, \dots)$ and an integer $k \ge 0$ such that $\mathbf{x}^k = \mathbf{y}$.

Alternatively, let $\to^* \subseteq \mathbb{B}^n \times \mathbb{B}^n$ be the reflexive and transitive closure of the semantics relation \to .

Then \mathbf{y} is reachable from \mathbf{x} if and only if $\mathbf{x} \to^* \mathbf{y}$.

Trap Sets

A trap set is a non-empty set of configurations $\emptyset \neq T \subseteq \mathbb{B}^n$ which satisfies the following property:

$$\forall \mathbf{x} \in T, \forall \mathbf{y} \in \mathbb{B}^n, \mathbf{x} \to^* \mathbf{y} \Rightarrow \mathbf{y} \in T$$

Let \mathcal{T} denote the set of all trap sets of a given BN.

Let $T, T' \in \mathcal{T}$ be two trap sets. We say T is smaller than T' if and only if it is included in T', $T \subseteq T'$.

For each configuration $\mathbf{x} \in \mathbb{B}^n$, let $[\mathbf{x}]_{\mathcal{T}} \stackrel{\Delta}{=} \{\mathbf{y} \in \mathbb{B}^n \mid \mathbf{x} \to^* \mathbf{y}\}$ denote the smallest trap set containing \mathbf{x} .

A trap set T is minimal, if $\forall T' \in \mathcal{T}$, $T \not\supset T'$.

Trap Sets

A trap set is a non-empty set of configurations $\emptyset \neq T \subseteq \mathbb{B}^n$ which satisfies the following property:

$$\forall \mathbf{x} \in T, \forall \mathbf{y} \in \mathbb{B}^n, \mathbf{x} \to^* \mathbf{y} \Rightarrow \mathbf{y} \in T$$

Let \mathcal{T} denote the set of all trap sets of a given BN.

Let $T, T' \in \mathcal{T}$ be two trap sets. We say T is smaller than T' if and only if it is included in T', $T \subseteq T'$.

For each configuration $\mathbf{x} \in \mathbb{B}^n$, let $[\mathbf{x}]_{\mathcal{T}} \stackrel{\Delta}{=} \{\mathbf{y} \in \mathbb{B}^n \mid \mathbf{x} \to^* \mathbf{y}\}$ denote the smallest trap set containing \mathbf{x} .

A trap set T is minimal, if $\forall T' \in \mathcal{T}$, $T \not\supset T'$.

Trap set properties

Closed by non-empty intersection: $T, T' \in \mathcal{T}$ such that $T \cap T' \neq \emptyset$, then $T \cap T' \in \mathcal{T}$.

Minimal trap sets are "strongly connected": $T \in \mathcal{T}$ minimal, then $\forall \mathbf{x}, \mathbf{y} \in T, \mathbf{x} \rightarrow^* \mathbf{y}$.

TIT'ET TAT'= & then TAT'ET proof: 3 x ETnT' wibitmry y ∈ B such × →*y TET , x ET => y ET } y ET T' => TIT'ET

T'ET, x ET' => y ET' TET is minimal, then tx, y =T, x - *y proof (by contradiction): Lel's assume X +> * Y we know TICT Then T'= {zeB"/x >*z{ YKTI We want to show that T'e T, contradicting minimality of T. Let Zell in bitmry we have x - \$ z - \$ z' => x - \$ z' ∀z'∈B" such that 2 → 2' and thus 2'ET' => T'ET

Attractors

An attractor is a terminal strongly connected component of the transition system (graph).

Attractors

An attractor is a terminal strongly connected component of the transition system (graph).

An attractor is a non-empty set of configurations $\emptyset \neq A \subseteq \mathbb{B}^n$ which satisfies the following properties:

- 1. $\forall \mathbf{x} \in A, \forall \mathbf{y} \in \mathbb{B}^n, \mathbf{x} \to^* \mathbf{y} \Rightarrow \mathbf{y} \in A$ (is a trap set);
- 2. $\forall \mathbf{x}, \mathbf{y} \in A, \mathbf{x} \rightarrow^* \mathbf{y}$ (is minimal);

Attractors

An attractor is a terminal strongly connected component of the transition system (graph).

An attractor is a non-empty set of configurations $\emptyset \neq A \subseteq \mathbb{B}^n$ which satisfies the following properties:

- 1. $\forall \mathbf{x} \in A, \forall \mathbf{y} \in \mathbb{B}^n, \mathbf{x} \to^* \mathbf{y} \Rightarrow \mathbf{y} \in A$ (is a trap set);
- 2. $\forall \mathbf{x}, \mathbf{y} \in A, \mathbf{x} \rightarrow^* \mathbf{y}$ (is minimal);

Types of attractors:

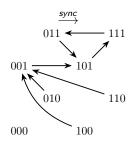
- Fixed points (singletons), $\forall x, y \in A, x = y$;
- Cyclic attractors (or limit cycles), consisting of at least two distinct configurations, ∃x, y ∈ A, x ≠ y;

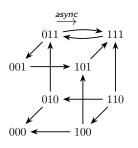
A configuration which is not part of any attractor is called transient.

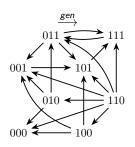
$$f_1(\mathbf{x}) = \mathbf{x}_3 \wedge (\neg \mathbf{x}_1 \vee \neg \mathbf{x}_2)$$

$$f_2(\mathbf{x}) = \mathbf{x}_1 \wedge \mathbf{x}_3$$

$$f_3(\mathbf{x}) = \mathbf{x}_1 \vee \mathbf{x}_2 \vee \mathbf{x}_3$$



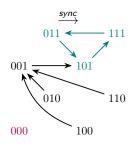


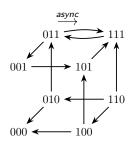


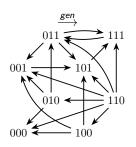
$$f_1(\mathbf{x}) = \mathbf{x}_3 \wedge (\neg \mathbf{x}_1 \vee \neg \mathbf{x}_2)$$

$$f_2(\mathbf{x}) = \mathbf{x}_1 \wedge \mathbf{x}_3$$

$$f_3(\mathbf{x}) = \mathbf{x}_1 \vee \mathbf{x}_2 \vee \mathbf{x}_3$$







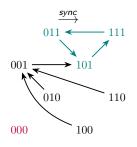
$$A_1 = \{101, 011, 111\}$$

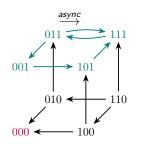
 $A_2 = \{000\}$

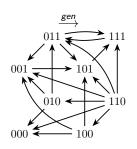
$$f_1(\mathbf{x}) = \mathbf{x}_3 \wedge (\neg \mathbf{x}_1 \vee \neg \mathbf{x}_2)$$

$$f_2(\mathbf{x}) = \mathbf{x}_1 \wedge \mathbf{x}_3$$

$$f_3(\mathbf{x}) = \mathbf{x}_1 \vee \mathbf{x}_2 \vee \mathbf{x}_3$$







$$A_1 = \{101, 011, 111\}$$

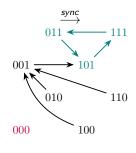
 $A_2 = \{000\}$

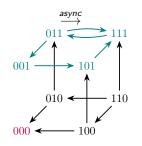
$$A_1 = \{001, 101, 011, 111\}$$
$$A_2 = \{000\}$$

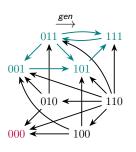
$$f_1(\mathbf{x}) = \mathbf{x}_3 \wedge (\neg \mathbf{x}_1 \vee \neg \mathbf{x}_2)$$

$$f_2(\mathbf{x}) = \mathbf{x}_1 \wedge \mathbf{x}_3$$

$$f_3(\mathbf{x}) = \mathbf{x}_1 \vee \mathbf{x}_2 \vee \mathbf{x}_3$$







$$A_1 = \{101, 011, 111\}$$

 $A_2 = \{000\}$

$$A_1 = \{001, 101, 011, 111\}$$

 $A_2 = \{000\}$

$$A_1 = \{001, 101, 011, 111\}$$

 $A_2 = \{000\}$

Basins of Attraction

The **weak basin of attraction** of an attractor A is a set of configurations $\mathcal{WB}(A)$ defined as:

$$\mathcal{WB}(A) \stackrel{\Delta}{=} \{ \mathbf{x} \in \mathbb{B}^n \mid \exists \mathbf{y} \in A, \mathbf{x} \to^* \mathbf{y} \}$$

The **strong basin of attraction** of an attractor A is a set of configurations $\mathcal{SB}(A)$ defined as:

$$\mathcal{SB}(A) \stackrel{\Delta}{=} \{ \mathbf{x} \in \mathbb{B}^n \mid \forall A' \in \mathcal{A}, \forall \mathbf{y} \in A', \mathbf{x} \to^* \mathbf{y} \Rightarrow A' = A \}$$
 where \mathcal{A} is the set of all attractors of the BN.

Basins of Attraction

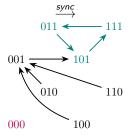
The **weak basin of attraction** of an attractor A is a set of configurations WB(A) defined as:

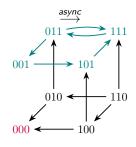
$$\mathcal{WB}(A) \stackrel{\Delta}{=} \{ \mathbf{x} \in \mathbb{B}^n \mid \exists \mathbf{y} \in A, \mathbf{x} \to^* \mathbf{y} \}$$

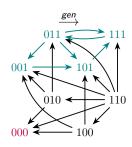
The **strong basin of attraction** of an attractor A is a set of configurations $\mathcal{SB}(A)$ defined as:

$$\mathcal{SB}(A) \stackrel{\Delta}{=} \{ \mathbf{x} \in \mathbb{B}^n \mid \forall A' \in \mathcal{A}, \forall \mathbf{y} \in A', \mathbf{x} \to^* \mathbf{y} \Rightarrow A' = A \}$$

where $\ensuremath{\mathcal{A}}$ is the set of all attractors of the BN.







Trap Spaces

A **subspace** of \mathbb{B}^n is a partial function $d: \{1, \ldots, n\} \hookrightarrow \mathbb{B}$.

The variables on which d is defined, $D = range(d) \subseteq \{1, ..., n\}$, are called **fixed**.

The variables which are not fixed, $F = \{1, ..., n\} \setminus D$, are called **free**. We denote the subspaces by vectors $\mathbf{d} \in \{0, 1, *\}^n$ such that for each $i \in \{1, ..., n\}$:

$$\mathbf{d}_i \stackrel{\Delta}{=} \begin{cases} 0 & \text{if } i \in D \text{ and } \mathsf{d}(\mathsf{i}) = 0 \\ 1 & \text{if } i \in D \text{ and } \mathsf{d}(\mathsf{i}) = 1 \\ * & \text{if } i \in F \end{cases}$$

By abuse of notation, a subspace is also a set of configurations it contains, $\mathbf{d} = \{\mathbf{x} \in \mathbb{B}^n \mid \forall i \in D, \mathbf{d}_i = \mathbf{x}_i\}.$

Trap Spaces

A **subspace** of \mathbb{B}^n is a partial function $d: \{1, \ldots, n\} \hookrightarrow \mathbb{B}$.

The variables on which d is defined, $D = range(d) \subseteq \{1, ..., n\}$, are called **fixed**.

The variables which are not fixed, $F = \{1, ..., n\} \setminus D$, are called **free**. We denote the subspaces by vectors $\mathbf{d} \in \{0, 1, *\}^n$ such that for each $i \in \{1, ..., n\}$:

$$\mathbf{d}_{i} \stackrel{\Delta}{=} \begin{cases} 0 & \text{if } i \in D \text{ and } d(i) = 0\\ 1 & \text{if } i \in D \text{ and } d(i) = 1\\ * & \text{if } i \in F \end{cases}$$

By abuse of notation, a subspace is also a set of configurations it contains, $\mathbf{d} = \{\mathbf{x} \in \mathbb{B}^n \mid \forall i \in D, \mathbf{d}_i = \mathbf{x}_i\}.$

A trap space is a subspace which is also a trap set.