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Boolean Network Inference
Given a set of desirable properties (specifications, observations, . . . );
The goal is to find all models that satisfy the properties.

There is no “universal strategy” for dynamical model inference, in the
fashion of model checking for formal verification.
We therefore focus directly on the Boolean network scenario.

Specification:

(Over-approximated) interaction graph. In gene regulation, interactions
and their sign can often be obtained from prior biological knowledge, e.g.
transcriptomics databases.

Observations:

Time series measurements. The dynamical constraints typically come in
the form of partially specified reachability relation. The observation is
often incomplete (only values for a subset of variables are available).
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Network Ensemble
Instead of trying each possible model separately, all plausible models are
examined together, in an ensemble, to avoid repeated exploration of
shared behaviours.

A Boolean network ensemble consists of all Boolean networks that share
an interaction graph, and multiple techniques have been developed to
analyse such ensembles:

• Coloured Model Checking;
J. Barnat, L. Brim, A. Krejčí, A. Streck, D. Šafránek, M. Vejnár, and T. Vejpustek. On parameter
synthesis by parallel model checking.
IEEE/ACM Trans. Comput. Biol. Bioinformatics, 9(3):693–705, May 2012

• Symbolic Representation;
G. Bernot, J.-P. Comet, and O. Roux. A genetically modified hoare logic that identifies the
parameters of a gene network.
In O. Roux and J. Bourdon, editors, Computational Methods in Systems Biology, pages 8–12,
Cham, Switzerland, 2015. Springer International Publishing

• Answer Set Programming;
S. Chevalier, C. Froidevaux, L. Paulevé, and A. Zinovyev. Synthesis of boolean networks from
biological dynamical constraints using answer-set programming.
In 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), pages
34–41, 2019
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Our Approach
J. Kolčák, D. Šafránek, S. Haar, and L. Paulevé. Parameter space abstraction and unfolding semantics of
discrete regulatory networks.
Theoretical Computer Science, 765:120–144, 2019

Combination of symbolic representation of the admissible models and
symbolic representation of the transition system.

The admissible models are
abstracted by an application of
abstract interpretation,
representing a lattice by upper
and lower bounds.

The transition system is
abstracted by the construction of
an unfolding, or rather a
complete finite prefix of one.

We need a partial order on the set of admissible Boolean networks
(a lattice of Boolean networks).
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Parametrisation
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Each parameter represents the output of one of the local functions for a
possible input configuration.

A parametrisation is a vector p ∈ B
∑

i∈{1,...,n}
(2|ω(i)|) = Bm assigning a

value to each parameter.

p = (1, 0, 0, 1, 0, 1, 0, 0)
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Parametrisation
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Extreme Parameters
We extend the notation on variables interacting with any variable
i ∈ {1, . . . , n} based on interaction signs:

Let ω+(i) ∆= {j ∈ ω(i) | j +−→ i ∈ E} be the set of all variables that have a
positive interaction with i (activators of i).

And ω−(i) ∆= {j ∈ ω(i) | j −−→ i ∈ E} be the set of all variables that have
a negative interaction with i (inhibitors of i).

Assume a variable i ∈ {1, . . . , n} such that fi is locally monotonic in all
inputs, ω+(i) ∩ ω−(i) = ∅.

Then the parameter pi
ω+(i) is the maximum parameter, and has to be

equal to 1, pi
ω+(i) = 1.

And the parameter pi
ω−(i) is the minimum parameter, and has to be

equal to 0, pi
ω−(i) = 0.
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Extreme Parameters – Example
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Order on Parametrisations
Piecewise order on Boolean vectors of length m, Bm.

Given two parametrisations p, p′ ∈ Bm,
p ≤ p′ ∆⇐⇒ ∀j ∈ {1, . . . , m}, pj ≤ p′

j .

0000
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1100 1010 1001 0110 0101 0011

1110 1101 1011 0111
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Lower and Upper Bounds

0000

1000 0100 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

⟨l = 0100, u = 1101⟩

The lower and upper bound abstraction has two very useful properties.

1. Possible transitions can be enumerated without having the expand
the abstraction.

2. The abstraction is of constant size.

x async−−−→ xi ⇔
∃p ∈ P, pi,x|ω(i) = 1 − xi

O(2m)

x async−−−→ xi ⇔
li,x|ω(i) = 1 − xi ∨ ui,x|ω(i) = 1 − xi

O(2m)
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Galois Connection
The set 2Bm of all subsets of parametrisations is ordered by the set
inclusion relation.

We define a partial order on the set Bm × Bm of all pairs of
parametrisations to be ⟨l, u⟩ ≤ ⟨l′, u′⟩ ∆⇐⇒ l ≥ l′ ∧ u ≤ u′.

We can define the abstraction by the means of a pair of functions,
α : 2Bm → Bm × Bm, called the abstraction function, and
γ : Bm × Bm → 2Bm , the concretisation function.

α : P 7→
〈∧

P,
∨

P
〉

γ : ⟨l, u⟩ 7→ {p ∈ Bm | l ≤ p ≤ u}

The pair α, γ is called a Galois connection iff for all P ∈ 2Bm and all
⟨l, u⟩ ∈ Bm × Bm it satisfies:

α(P) ≤ ⟨l, u⟩ ⇐⇒ P ⊆ γ(⟨l, u⟩)

An abstraction (over-approximation) defined by the means of a Galois
connection is always sound – “produces no false negatives”.
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Transition System of a Network Ensemble
The state set is the set of all configurations enriched with abstracted
parametrisation sets: S = Bn × Bm × Bm.

The transitions are then given by the law defined earlier:

(x, ⟨l, u⟩) async−−−→ (xi, Λo(Λm(⟨l′, u′⟩))) ⇐⇒ li = 1 − xi ∨ ui = 1 − xi

where l′ =
{

li,x|ω(i) if xi = 0 ∧ li,x|ω(i) = 0
l if xi = 1 ∨ li,x|ω(i) = 1

,

u′ =
{

u if xi = 0 ∨ ui,x|ω(i) = 0
ui,x|ω(i) if xi = 1 ∧ ui,x|ω(i) = 1

and the narrowing operators Λn, Λo : Bm × Bm → Bm × Bm, ensuring
tightness of the abstraction with respect to monotonicity and existence
(observability) of the interactions, are defined on the following slides.
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Monotonicity Narrowing
We define a partial order on the parameters of variable i ∈ {1, . . . , n} as
pi

q ≤ pi
q′

∆⇐⇒ q ∩ ω+(i) ⊆ q′ ∩ ω+(i) ∧ q ∩ ω−(i) ⊇ q′ ∩ ω−(i).

The narrowing operator Λm : Bm × Bm → Bm × Bm is then defined as:

Λm : ⟨l, u⟩ 7→ ⟨l′, u′⟩

where for each i ∈ {1, . . . , n} and each q ∈ 2ω(i):

l′i,q = maxq′≤q(li,q′)

u′
i,q = minq′≥q(ui,q′)

Boolean Networks in Systems Life Sciences 12/15



Monotonicity Narrowing
We define a partial order on the parameters of variable i ∈ {1, . . . , n} as
pi

q ≤ pi
q′

∆⇐⇒ q ∩ ω+(i) ⊆ q′ ∩ ω+(i) ∧ q ∩ ω−(i) ⊇ q′ ∩ ω−(i).

The narrowing operator Λm : Bm × Bm → Bm × Bm is then defined as:

Λm : ⟨l, u⟩ 7→ ⟨l′, u′⟩

where for each i ∈ {1, . . . , n} and each q ∈ 2ω(i):

l′i,q = maxq′≤q(li,q′)

u′
i,q = minq′≥q(ui,q′)

Boolean Networks in Systems Life Sciences 12/15



Monotonicity Narrowing – Example
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Closed and Open Parameters
A parameter pi

q is closed in ⟨l, u⟩ iff li,q = ui,q.
Conversely, pi

q is open iff li,q < ui,q.

The subset q ⊆ ω(i) \ {j} is a closed context for j ∈ ω(i) iff both pi
q and

pi
q∪{j} are closed. A context which is not closed is open. We use

C j
i (⟨l, u⟩) = {q ∈ 2ω(i)\{j} | li,q = ui,q ∧ li,q∪{j} = ui,q∪{j}} and

O l
i (⟨l, u⟩) = {q ∈ 2ω(i)\{j} | li,q < ui,q ∨ li,q∪{j} < ui,q∪{j}} to denote the

sets of all closed and open contexts of j , respectively, in ⟨l, u⟩.

Finally, a closed context q is observable if li,q ̸= li,q∪{j}, that is, if the
context is closed with a different value depending on the inclusion of j .
Let oC j

i (⟨l, u⟩) = {q ∈ C j
i (⟨l, u⟩) | li,q ̸= li,q∪{j}} be the set of all

observable closed contexts of j in ⟨l, u⟩.
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Observability Narrowing
The narrowing operator Λo : Bm × Bm → Bm × Bm is defined as
Λo : ⟨l, r⟩ 7→ ⟨l′, u′⟩ where

l′ =


li,q if oC j

i (⟨l, u⟩) = ∅ ∧ Oj
i (⟨l, u⟩) = {q} ∧ ui,q∪{j} = 0

li,q∪{j} if oC j
i (⟨l, u⟩) = ∅ ∧ Oj

i (⟨l, u⟩) = {q} ∧ ui,q = 0
l otherwise

u′ =


ui,q if oC j

i (⟨l, u⟩) = ∅ ∧ Oj
i (⟨l, u⟩) = {q} ∧ li,q∪{j} = 1

ui,q∪{j} if oC j
i (⟨l, u⟩) = ∅ ∧ Oj

i (⟨l, u⟩) = {q} ∧ li,q = 1
u otherwise
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