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Boolean Network Inference

Given a set of desirable properties (specifications, observations, .. .);
The goal is to find all models that satisfy the properties.

There is no “universal strategy” for dynamical model inference, in the
fashion of model checking for formal verification.
We therefore focus directly on the Boolean network scenario.

SPECIFICATION:

(Over-approximated) interaction graph. In gene regulation, interactions
and their sign can often be obtained from prior biological knowledge, e.g.
transcriptomics databases.

OBSERVATIONS:

Time series measurements. The dynamical constraints typically come in
the form of partially specified reachability relation. The observation is
often incomplete (only values for a subset of variables are available).
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Network Ensemble

Instead of trying each possible model separately, all plausible models are
examined together, in an ensemble, to avoid repeated exploration of
shared behaviours.

A Boolean network ensemble consists of all Boolean networks that share
an interaction graph, and multiple techniques have been developed to
analyse such ensembles:

= Coloured Model Checking;

J. Barnat, L. Brim, A. Krejéi, A. Streck, D. Safranek, M. Vejnar, and T. Vejpustek. On parameter
synthesis by parallel model checking
IEEE/ACM Trans. Comput. Biol. Bioinformatics, 9(3):693-705, May 2012

= Symbolic Representation;

G. Bernot, J.-P. Comet, and O. Roux. A genetically modified hoare logic that identifies the
parameters of a gene network.

In O. Roux and J. Bourdon, editors, Computational Methods in Systems Biology, pages 8-12,
Cham, Switzerland, 2015. Springer International Publishing

= Answer Set Programming;

S. Chevalier, C. Froidevaux, L. Paulevé, and A. Zinovyev. Synthesis of boolean networks from
biological dynamical constraints using answer-set programming.

In 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), pages
34-41, 2019

Boolean Networks in Systems Life Sciences

3/15



Our Approach

J. Koleak, D. Safranek, S. Haar, and L. Paulevé. Parameter space abstraction and unfolding semantics of
discrete regulatory networks

Theoretical Computer Science, 765:120-144, 2019

Combination of symbolic representation of the admissible models and
symbolic representation of the transition system.

The admissible models are The transition system is
abstracted by an application of abstracted by the construction of
abstract interpretation, an unfolding, or rather a
representing a lattice by upper complete finite prefix of one.

and lower bounds.
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J. Koleak, D. Safranek, S. Haar, and L. Paulevé. Parameter space abstraction and unfolding semantics of
discrete regulatory networks

Theoretical Computer Science, 765:120-144, 2019

Combination of symbolic representation of the admissible models and
symbolic representation of the transition system.

The admissible models are The transition system is
abstracted by an application of abstracted by the construction of
abstract interpretation, an unfolding, or rather a
representing a lattice by upper complete finite prefix of one.

and lower bounds.

We need a partial order on the set of admissible Boolean networks
(a lattice of Boolean networks).
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Parametrisation
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Each parameter represents the output of one of the local functions for a

possible input configuration.

value to each parameter.
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Parametrisation
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Each parameter represents the output of one of the local functions for a
possible input configuration.

S 21«0 N
A parametrisation is a vector p € IBSZ/'EU vvvvv ! ) B™ assigning a

value to each parameter.

P=(1,0,0,1,0,1,00)  p& (1,004 4,4,0)
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Extreme Parameters

We extend the notation on variables interacting with any variable
i €{1,...,n} based on interaction signs:

Let w'(7) 2 {j € w(i) | j =i € E} be the set of all variables that have a
positive interaction with i (activators of ).

And w(¥) 2 {j €w(i)|j— i € E} be the set of all variables that have
a negative interaction with / (inhibitors of /).
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Extreme Parameters

We extend the notation on variables interacting with any variable
i €{1,...,n} based on interaction signs:

Let w'(7) 2 {j € w(i) | j =i € E} be the set of all variables that have a
positive interaction with i (activators of ).

And w(¥) 2 {j €w(i)|j— i € E} be the set of all variables that have
a negative interaction with / (inhibitors of /).

Assume a variable i € {1,...,n} such that f; is locally monotonic in all
inputs, wt (i) Nw™ (i) = 0.

Then the parameter p:ﬁ(l.) is the maximum parameter, and has to be
equal to 1, pL+(l.) =1.

And the parameter pij_(,.) is the minimum parameter, and has to be

equal to 0, ff(;) =0.
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Extreme Parameters — Example
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Extreme Parameters — Example
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Extreme Parameters — Example
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Extreme Parameters — Example

wh(a) =10
w?(b) = {b}
wt(c) ={a}

Boolean Networks in Systems Life Sciences

Xa | f(x) | xp | fo(x) |
P{a=0) 0 Pib:m
Pla=1) L] Plpeyy
Xa X | fe(x)

0 0 P<Ca=o,b=0)

1 0 P<Ca:1,b:0)

0 1| Pl

L1 | Pl by
w™(a) = {a}
w(b)=10
w™(c) = {b}

7/15



Order on Parametrisations
Piecewise order on Boolean vectors of length m, B™.

Given two parametrisations p,p’ € B™,
A .
p<p =Vje{l,...,m}p; <pj
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Order on Parametrisations

Piecewise order on Boolean vectors of length m, B™.

Given two parametrisations p,p’ € B™,
A .
p<p =Vje{l,...,m}p; <pj
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Lower and Upper Bounds

1111
1110 1101 1011 0111
1100/ 1010 1001 __ 0110 0101 \0011 (1=0100,u = 1101)
\1000 0100 0010 0001/
0000

The lower and upper bound abstraction has two very useful properties.
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Lower and Upper Bounds

1111
1110 1101 1011 0111
110( 1010 1001 __ 0110 0101 \0011 (1=0100,u = 1101)
\1000 0100 0010 0001/
0000

The lower and upper bound abstraction has two very useful properties.

1. Possible transitions can be enumerated without having the expand
the abstraction.

async 7 async

x 25 x o x 25 x o
dpeP, pi,x|w(,-) =1-x; l;

1] iy

=1—x;V Uixlo = 1—x;
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Lower and Upper Bounds

1111
1110 1101 1011 0111
110( 1010 1001 __ 0110 0101 \0011 (1=0100,u = 1101)
\1000 0100 0010 0001/
0000

The lower and upper bound abstraction has two very useful properties.

1. Possible transitions can be enumerated without having the expand
the abstraction.

2. The abstraction is of constant size.

async 7 async 7
x 25 x o x 25 x o
IpeP, Pixlun = L —=x; Iivx‘w(i) =1l-xV Yixlom = 1—=x;
02 O(2m)
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Galois Connection Absbect [m{wprc(?hba

The set 2B” of all subsets of parametrisations is ordered by the set
inclusion relation. Concrlbe set

We define a partial order on the set B™ x B™ of all pairs of
o A
parametrisations to be (LLu) < (I';u') <= 1>V Au<u'.

Aby(ﬁau& j(t

We can define the abstraction by the means of a pair of functions,
a: 28" — B™ x B™, called the abstraction function, and
v: B™ x B™ — 28" the concretisation function.

a:Pl—></\P,\/P> v:{buy—{peB™|I<p<u}

The pair @, is called a Galois connection iff for all P € 28" and all
(l,u) € B™ x B™ it satisfies:

PST(M (V))

a(P) < (lu) <= P S ({l,u))
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Galois Connection

The set 2B” of all subsets of parametrisations is ordered by the set
inclusion relation.

We define a partial order on the set B™ x B™ of all pairs of
o A
parametrisations to be (LLu) < (I';u') <= 1>V Au<u'.

We can define the abstraction by the means of a pair of functions,
a: 28" — B™ x B™, called the abstraction function, and
v: B™ x B™ — 28" the concretisation function.

a:Pl—></\P,\/P> v:{bu) = {peBT|I1<p<u}

The pair @, is called a Galois connection iff for all P € 28" and all
(l,u) € B™ x B™ it satisfies:
a(P) < (lu) <= P S ({l,u))

An abstraction (over-approximation) defined by the means of a Galois
connection is always sound — “produces no false negatives”.
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Transition System of a Network Ensemble

The state set is the set of all configurations enriched with abstracted
parametrisation sets: S = B” x B™ x B™.

The transitions are then given by the law defined earlier:
(%, (L)) 2225 (x Ag(Am((V ') == i =1—x; Vu; =1—x

where I/ - Ii’xl“’(i) if Xj = 0A I"7X‘w(/') =0
ifx;=1V Iiﬂ‘\w(') =1

i

, u if X = ov U;,x‘w“) =0
W=7 —

u Xl ifx; =1A Ui, = 1

and the narrowing operators A, A,: B” x B™ — B™ x B™, ensuring
tightness of the abstraction with respect to monotonicity and existence

(observability) of the interactions, are defined on the following slides.
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Monotonicity Narrowing

We define a partial order on the parameters of variable i € {1,...,n} as
Pl < ply <25 gNwt (i) S g’ Nwh () Agnw () 2 ¢ Nw(i).

Boolean Networks in Systems Life Sciences 12/15



Monotonicity Narrowing

We define a partial order on the parameters of variable i € {1,...,n} as
Pl < ply <25 gNwt (i) S g’ Nwh () Agnw () 2 ¢ Nw(i).

The narrowing operator A,,: B™ x B™ — B™ x B™ is then defined as:
Am: (Lu) — (I u')

where for each i € {1,...,n} and each q € 2():
|;’q = manfgq(lhq’)

U?,q =ming>q(ujq)
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Monotonicity Narrowing — Example

& © O

== 22O OO OO Q
e e =1

H O, ORFRORFOlT
== 0O 0Ok M= OONNO
OO OO OO O =
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Monotonicity Narrowing — Example

& © O

{b,d} = w™(a)
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Monotonicity Narrowing — Example

& © O

{b,d} = w™(a)
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Closed and Open Parameters

A parameter p; is closed in (I, u) iff I g = u; 4.
Conversely, p is open iff I; ; < uj 4.

The subset g C w(i)\ {j} is a closed context for j € w(i) iff both p; and
qu{j} are closed. A context which is not closed is open. We use

G ((huw) ={q¢c 2w(i.)\{j.} [ li,g = Uig Aliquijy = Wiqugy} and

Ol((bu)) ={q e 2w (MU} | lig <uigVliqugy <Uiqugy} to denote the

sets of all closed and open contexts of j, respectively, in (I, u).

Finally, a closed context q is observable if I; , # I,-’qu{j}, that is, if the
context is closed with a different value depending on the inclusion of j.
Let oC/((Lu)) = {g € C/((l,u)) | l;q # liqugj} } be the set of all
observable closed contexts of j in (I, u).
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Observability Narrowing

The narrowing operator A,: B™ x B™ — B™ x B™ is defined as
Ao {Lr) — (' u’) where

I"aif oC/((u)) = B A O((1u) = {q} Auiqugy =0
= {auiil i oC{((Lu}) O{(( ;u)) ={q} Auj g =0

| otherwise

uh?if oGl ((Lu) = 0 A Of({(luw) = {a} Aliqugy = 1
u = quh ol if ol ((bu)) =0 A ON((u)) = {q} Alig=1

u otherwise
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