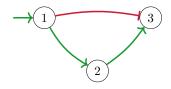
Most Permissive Semantics

Juri Kolčák

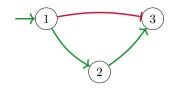
Friday 5th December, 2025



$$f_1(\mathbf{x}) = 1$$

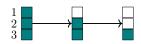
 $f_2(\mathbf{x}) = \mathbf{x}_1$
 $f_3(\mathbf{x}) = \neg \mathbf{x}_1 \wedge \mathbf{x}_2$

S. Mangan and U. Alon. Structure and function of the feed-forward loop network motif. Proceedings of the National Academy of Sciences, 100(21):11980–11985, 2003

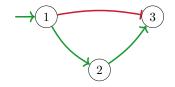


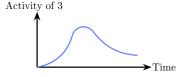
$$f_1(\mathbf{x}) = 1$$

 $f_2(\mathbf{x}) = \mathbf{x}_1$
 $f_3(\mathbf{x}) = \neg \mathbf{x}_1 \wedge \mathbf{x}_2$



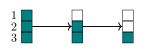
S. Mangan and U. Alon. Structure and function of the feed-forward loop network motif. Proceedings of the National Academy of Sciences, 100(21):11980–11985, 2003

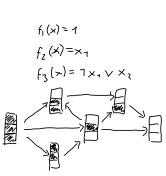




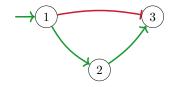
$$f_1(\mathbf{x}) = 1$$

 $f_2(\mathbf{x}) = \mathbf{x}_1$
 $f_3(\mathbf{x}) = \neg \mathbf{x}_1 \wedge \mathbf{x}_2$



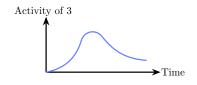


S. Mangan and U. Alon. Structure and function of the feed-forward loop network motif. Proceedings of the National Academy of Sciences, 100(21):11980–11985, 2003



$$f_1(\mathbf{x}) = 1$$

 $f_2(\mathbf{x}) = \mathbf{x}_1$
 $f_3(\mathbf{x}) = \neg \mathbf{x}_1 \wedge \mathbf{x}_2$



 $1 \xrightarrow{+} 2$ and $2 \xrightarrow{+} 3$ are "fast acting", have low **activation thresholds**.

 $1 \xrightarrow{-} 3$ is "slow acting", has a high activation threshold.

S. Mangan and U. Alon. Structure and function of the feed-forward loop network motif.

Proceedings of the National Academy of Sciences, 100(21):11980–11985, 2003

Transient Values

TWO NEW VARIABLE VALUES:

- \ \ "Variable **decreasing** from 1 to 0";

Expanded state set, $\hat{S} = (\mathbb{B} \cup \{\nearrow, \searrow\})^n$.

The little roof denotes configurations with transient values, $\hat{\mathbf{x}} \in \hat{S}$.

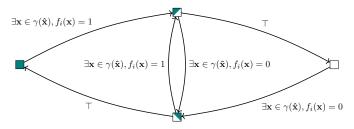
A variable that wants to increase (resp. decrease) value does not directly jump from 0 to 1 (resp. 1 to 0), but first changes to the increasing value, \nearrow (resp. decreasing value, \searrow).

Transient values are used to denote that a variable may have crossed activation thresholds of some outgoing interactions, but possibly not all.

A variable in a transient value can thus be seen as either 0 or 1.

$$\gamma(\hat{\mathbf{x}}) \stackrel{\Delta}{=} \{\mathbf{x} \in \mathbb{B} \mid \forall i \in \{1, \dots, n\}, \hat{\mathbf{x}}_i \in \mathbb{B} \Rightarrow \mathbf{x}_i = \hat{\mathbf{x}}_i\}$$

Most Permissive Semantics



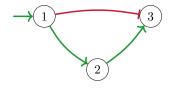
$$\forall \hat{\mathbf{x}} \neq \hat{\mathbf{y}} \in \hat{S}, \hat{\mathbf{x}} \xrightarrow{\hat{m}\hat{p}} \hat{\mathbf{y}} \iff \exists i \in \{1, \dots, n\}, \Delta(\hat{\mathbf{x}}, \hat{\mathbf{y}}) = \{i\} \land \\
[(\hat{\mathbf{x}}_i \neq 1 \land \hat{\mathbf{y}}_i = \nearrow \land \exists \mathbf{x} \in \gamma(\hat{\mathbf{x}}), f_i(\mathbf{x}) = 1) \lor \\
(\hat{\mathbf{x}}_i \neq 0 \land \hat{\mathbf{y}}_i = \searrow \land \exists \mathbf{x} \in \gamma(\hat{\mathbf{x}}), f_i(\mathbf{x}) = 0) \lor \\
(\hat{\mathbf{x}}_i = \nearrow \land \hat{\mathbf{y}}_i = 1) \lor \\
(\hat{\mathbf{x}}_i = \searrow \land \hat{\mathbf{y}}_i = 0)]$$

$$\forall \mathbf{x} \neq \mathbf{y} \in \mathbb{B}^n, \mathbf{x} \xrightarrow{mp} \mathbf{y} \iff \mathbf{x} \xrightarrow{\hat{m}\hat{p}} \mathbf{y}$$

L. Paulevé, J. Kolčák, T. Chatain, and S. Haar. Reconciling qualitative, abstract, and scalable modeling of biological networks.

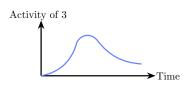
Nature Communications, 11(1):4256, 08 2020

Incoherent Feed-Forward Loop 3 Revisited

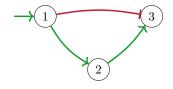


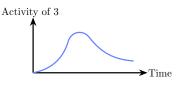
$$f_1(\mathbf{x}) = 1$$

 $f_2(\mathbf{x}) = \mathbf{x}_1$
 $f_3(\mathbf{x}) = \neg \mathbf{x}_1 \wedge \mathbf{x}_2$



Incoherent Feed-Forward Loop 3 Revisited

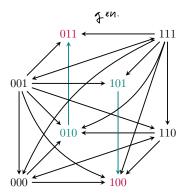


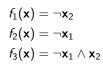


$$f_1(\mathbf{x}) = 1$$

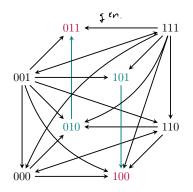
 $f_2(\mathbf{x}) = \mathbf{x}_1$
 $f_3(\mathbf{x}) = \neg \mathbf{x}_1 \wedge \mathbf{x}_2$

Most Permissive Semantics: Example



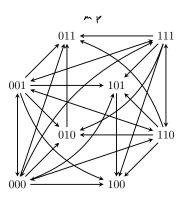


Most Permissive Semantics: Example

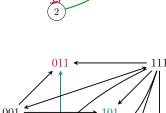


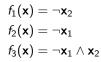
$$f_1(\mathbf{x}) = \neg \mathbf{x}_2$$

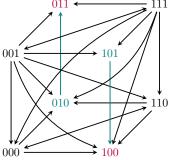
 $f_2(\mathbf{x}) = \neg \mathbf{x}_1$
 $f_3(\mathbf{x}) = \neg \mathbf{x}_1 \wedge \mathbf{x}_2$

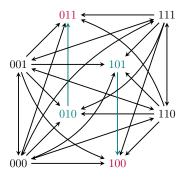


Most Permissive Semantics: Example









MP Semantics Properties

MONOTONICITY:

For any two MP configurations $\hat{\mathbf{x}}, \hat{\mathbf{y}} \in \hat{\mathcal{S}}$, if for all variables $i \in \{1, ..., n\}, \hat{\mathbf{y}}_i \in \mathbb{B} \rightarrow \hat{\mathbf{y}}_i = \hat{\mathbf{x}}_i$, then $\gamma(\hat{\mathbf{x}}) \subseteq \gamma(\hat{\mathbf{y}})$.

Let further $\hat{\mathbf{x}} \xrightarrow{\hat{mp}} \hat{\mathbf{x}}'$ be arbitrary such that $\hat{\mathbf{x}}_j' \in \{\nearrow, \searrow\}$ with $\{j\} = \Delta(\hat{\mathbf{x}}, \hat{\mathbf{x}}')$. Then either, $\hat{\mathbf{y}}_j = \hat{\mathbf{x}}_j'$, or there exists an MP configuration $\hat{\mathbf{y}}' \in \hat{\mathbf{S}}$ such that $\hat{\mathbf{y}} \xrightarrow{\hat{mp}} \hat{\mathbf{y}}'$ with $\hat{\mathbf{x}}_j' = \hat{\mathbf{y}}_j'$.

"A variable update cannot be disabled by putting another variable into transient value."

Transitivity:

For any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{B}^n$, $\mathbf{x} \xrightarrow{mp} \mathbf{y}$ and $\mathbf{y} \xrightarrow{mp} \mathbf{z} \Rightarrow \mathbf{x} \xrightarrow{mp} \mathbf{z}$.

ATTRACTORS:

The attractors of an MPBN are exactly the minimal trap spaces.

XEB" XEA for some attractor A

(et [x] , be the smallest top space containing x.

∃; ∈ {1,..., n} z; + x;

2' E[x] 7 s.t. z'; - z; 2nd x - 2 *z1

such z' has to exist, otherwi fixing vanable; to x; would to asmaller trap space.

for every really i \{1, ..., n} free in [x] T, we can reach a configuration i'with 2'; # x; From x

× met z' we un 'stop before collapsing to Boolem values"

=> we reach 2' such that $\gamma(2') \ge \gamma(x)$

=> We can flip all free variables in sequence and reach
ye [x]_ s.t. y; +x; on all free variables

We can pich any subset Walling of the free renables and reach xw, x me xw

JWC (1,... In) of free worzblu such that z = x

"If we can cross the diagonal of hyper-cabe, we can also well along the sides"

Refinements

Let f be a Boolean network and g be a discrete multivalued network of the same dimension n, and let \mathbb{M} be the state space of g $(\mathbb{M} = \{0, \dots, m_1\} \times \dots \times \{0, \dots, m_n\}).$

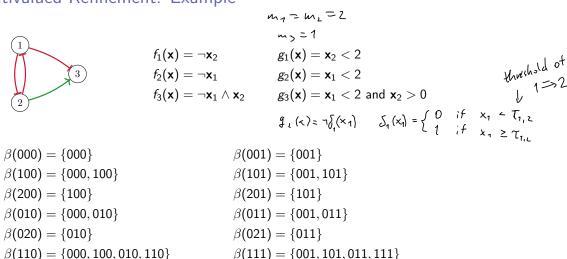
We define a function $\beta \colon \mathbb{M} \to 2^{\mathbb{B}^n}$ assigning to every multivalued configuration $\mathbf{x} \in \mathbb{M}$ a set of **possible binarisations** as follows:

$$\beta(\mathbf{x}) = \{\mathbf{y} \in \mathbb{B}^n \mid \forall i \in \{1, \dots, n\}, (\mathbf{x}_i = 0 \Rightarrow \mathbf{y}_i = 0) \land (\mathbf{x}_i = m_i \Rightarrow \mathbf{y}_i = 1)\}$$

The multivalued network g is a **refinement** of the Boolean network f if and only if for every variable $i \in \{1, ..., n\}$ and for every multivalued configuration $\mathbf{x} \in \mathbb{M}$, there exists a Boolean configuration $\mathbf{y} \in \beta(\mathbf{x})$ such that $g_i(\mathbf{x}) = f_i(\mathbf{y})$.

The same notion applies to ODE models, with the exception of not considering maxima in β and using derivatives in place of the local functions g_1, \ldots, g_n .

Multivalued Refinement: Example



 $\beta(211) = \{101, 111\}$

 $\beta(121) = \{011, 111\}$

 $\beta(221) = \{111\}$

 $eta(220) = \{110\}$ Boolean Networks in Systems Life Sciences

 $\beta(210) = \{100, 110\}$

 $\beta(120) = \{010, 110\}$

The MPBN Abstraction is Complete

Let f be a Boolean network of dimension n and let g be a multivalued refinement of f with state space $\mathbb{M} = \{0, \dots, m_1\} \times \cdots \times \{1, \dots, m_n\}$.

For every multivalued configuration $\mathbf{x} \in \mathbb{M}$, let $\hat{\beta}(\mathbf{x}) = \{\hat{\mathbf{x}} \in \hat{S} \mid \forall i \in \{1, \dots, n\}, (\hat{\mathbf{x}}_i = 0 \Leftrightarrow \mathbf{x}_i = 0) \land (\hat{\mathbf{x}}_i = 1 \Leftrightarrow \mathbf{x} = m_i)\}$ be the set of all the corresponding most permissive configurations.

Then, the following theorem holds for any $\mathbf{x} \neq \mathbf{y} \in \mathbb{M}$:

$$\mathbf{x} \xrightarrow[g]{gen} \mathbf{y} \Rightarrow \forall \hat{\mathbf{x}} \in \hat{\beta}(\mathbf{x}), \exists \hat{\mathbf{y}} \in \hat{\beta}(\mathbf{y}), \hat{\mathbf{x}} \xrightarrow[f]{m\hat{p}} \hat{\mathbf{y}}$$

where for all $i \in \{1, \ldots, n\}$:

$$\hat{\mathbf{y}}_i = \begin{cases} 0 & \text{if } \mathbf{y}_i = 0 \\ 1 & \text{if } \mathbf{y}_i = m_i \\ \nearrow & \text{if } \mathbf{y}_i > \mathbf{x}_i \text{ and } \mathbf{y}_i < m_i \\ \searrow & \text{if } \mathbf{y}_i < \mathbf{x}_i \text{ and } \mathbf{y}_i > 0 \\ \hat{\mathbf{x}}_i & \text{otherwise} \end{cases}$$

Boolean Networks in Systems Life Sciences

$$\mathcal{B}(\mathbf{x}) = \mathcal{T}(\hat{\mathbf{x}})$$
 meaning we can chose to evaluate our Boden functions f_i on a configuration $Z \in \mathcal{T}(\hat{\mathbf{x}}) = \mathcal{B}(\mathbf{x})$ such that $f_i(z) = g_i(\mathbf{x})$ for all i

10/10