
Model Verification
(Temporal Properties)

Juri Kolčák

Friday 12th December, 2025

Formal Verification
Given a model of a dynamical system (complex system);
And a set of desirable properties (specifications, observations, . . .);
The goal is to determine whether the model satisfies the properties.

Automatic Verification:

Testing – Identify critical scenarios to test model executions on.
Non-exhaustive: if an execution fails a test, we know the model does not
satisfy our properties, but if all succeed, we cannot rule out there is
another execution which would fail.

Static Analysis – Avoids exploration of dynamics (transition system).
Typically provides only partial results (approximation).

Dynamic Analysis – Exhaustive exploration of the transition system.
Formal reasoning about dynamic properties (evolution in time) is possible
using temporal logics. Such temporal properties can be automatically
verified by model checking.

Boolean Networks in Systems Life Sciences 2/15

Temporal Logic
Formal (unambiguous) reasoning about properties related to the
successive change of system states (variables).

Temporal logics we focus on:

• Linear Temporal Logic (LTL) – Reasoning on traces of the model.

• Computational Tree Logic (CTL) – Reasoning on execution trees.

• (CTL∗ – CTL enriched to be able to express everything that’s
possible in LTL.)

Other temporal logics:

• Higher expressivity – allows more complex properties.

• Include time – allows specification of time-bound properties.

• Probabilities – allows properties about probabilities of behaviours.

Boolean Networks in Systems Life Sciences 3/15

Traces
For a transition system (S, →), a trace is an (infinite) sequence of
configurations σ = (x0, x1, x2, . . .) such that ∀k > 0, xk−1 → xk .

For a configuration x ∈ Bn, let S(x) be the set of all traces that originate
in x.

Example:

f1(x) = x3 ∧ (¬x1 ∨ ¬x2)
f2(x) = x1 ∧ x3

f3(x) = x1 ∨ x2 ∨ x3

000 100

010

001

110

101

011 111

σ1 = (110, 100, 000)
σ2 = (101, [111, 011]ω)
σ3 = (001, 101, 111)

. . .

Sometimes it’s useful to consider only infinite traces. To preserve
reachability, we include the transition x → x for each fixed point x.

Boolean Networks in Systems Life Sciences 4/15

Traces
For a transition system (S, →), a trace is an (infinite) sequence of
configurations σ = (x0, x1, x2, . . .) such that ∀k > 0, xk−1 → xk .

For a configuration x ∈ Bn, let S(x) be the set of all traces that originate
in x.

Example:

f1(x) = x3 ∧ (¬x1 ∨ ¬x2)
f2(x) = x1 ∧ x3

f3(x) = x1 ∨ x2 ∨ x3

000 100

010

001

110

101

011 111

σ1 = (110, 100, 000)
σ2 = (101, [111, 011]ω)
σ3 = (001, 101, 111)

. . .

Sometimes it’s useful to consider only infinite traces. To preserve
reachability, we include the transition x → x for each fixed point x.

Boolean Networks in Systems Life Sciences 4/15

Traces
For a transition system (S, →), a trace is an (infinite) sequence of
configurations σ = (x0, x1, x2, . . .) such that ∀k > 0, xk−1 → xk .

For a configuration x ∈ Bn, let S(x) be the set of all traces that originate
in x.

Example:

f1(x) = x3 ∧ (¬x1 ∨ ¬x2)
f2(x) = x1 ∧ x3

f3(x) = x1 ∨ x2 ∨ x3

000 100

010

001

110

101

011 111

σ1 = (110, 100, 000)
σ2 = (101, [111, 011]ω)
σ3 = (001, 101, 111)

. . .

Sometimes it’s useful to consider only infinite traces. To preserve
reachability, we include the transition x → x for each fixed point x.

Boolean Networks in Systems Life Sciences 4/15

Execution Trees
“All traces from S(x) bundled by prefixes.”

Formally, a connected acyclic graph (V , E) with a labelling function
λ : V → Bn mapping the vertices to the configurations.

“Unfolding of the transition system.”

Given an initial configuration x, the execution tree can be intuited
inductively as follows:

1. Add the root vr to V with λ(vr) = x and initialise the set of
unprocessed vertices V ′ = {vr };

2. While V ′ is not empty, take v ∈ V ′ and for each y ∈ Bn such that
λ(v) → y, add a new node v ′ with λ(v ′) = y to both V , V ′, and an
edge (v , v ′) to E ;

Comparison to traces:
For a given root, the execution tree is unique.
A trace corresponds to a path in the tree starting from the root.

Boolean Networks in Systems Life Sciences 5/15

Execution Trees
“All traces from S(x) bundled by prefixes.”

Formally, a connected acyclic graph (V , E) with a labelling function
λ : V → Bn mapping the vertices to the configurations.

“Unfolding of the transition system.”

Given an initial configuration x, the execution tree can be intuited
inductively as follows:

1. Add the root vr to V with λ(vr) = x and initialise the set of
unprocessed vertices V ′ = {vr };

2. While V ′ is not empty, take v ∈ V ′ and for each y ∈ Bn such that
λ(v) → y, add a new node v ′ with λ(v ′) = y to both V , V ′, and an
edge (v , v ′) to E ;

Comparison to traces:
For a given root, the execution tree is unique.
A trace corresponds to a path in the tree starting from the root.

Boolean Networks in Systems Life Sciences 5/15

Execution Trees – Example

f1(x) = x3 ∧ (¬x1 ∨ ¬x2)
f2(x) = x1 ∧ x3

f3(x) = x1 ∨ x2 ∨ x3

000 100

010

001

110

101

011 111

110

111

100

010

011

101

000

011

000

. . .

111

001

111

. . .

. . .

101 111 . . .

Boolean Networks in Systems Life Sciences 6/15

Execution Trees – Example

f1(x) = x3 ∧ (¬x1 ∨ ¬x2)
f2(x) = x1 ∧ x3

f3(x) = x1 ∨ x2 ∨ x3

000 100

010

001

110

101

011 111

110

111

100

010

011

101

000

011

000

. . .

111

001

111

. . .

. . .

101 111 . . .

Boolean Networks in Systems Life Sciences 6/15

Atomic Propositions
“A set of properties that characterise the configurations of the system.”

Formally, we define a finite set of atomic propositions P = {p0, . . . , pk},
k ∈ N and a mapping α : Bn → 2P which maps each configuration to a
set of atomic propositions “valid” in the configuration.

A configuration x ∈ Bn satisfies a proposition p ∈ P, x |= p, if and only if
p ∈ α(x).

Examples:

• xi “Variable i is active”;

• xi + xj + xk ≥ 2 “At least two of the variables i , j , k are active”;

• ∀i ∈ W ⊆ {1, . . . , n}, xi = 0 “None of the variables in W is active”;

• x ∈ A “Is part of the attractor A”;

Boolean Networks in Systems Life Sciences 7/15

Linear Temporal Logic
Syntax:

φ ::= ⊤ | p ∈ P | ¬φ | φ1 ∧ φ2 | Xφ | φ1 U φ2(| Fφ | Gφ)

Semantics:

σ |= ⊤
σ |= p ⇔ x0 |= p
σ |= ¬φ ⇔ σ ̸|= φ
σ |= φ1 ∧ φ2 ⇔ σ |= φ1 ∧ σ |= φ2
σ |= Xφ ⇔ (x1, x2, . . .) |= φ
σ |= φ1 U φ2 ⇔ ∃k ∈ N0, (xk , xk+1, . . .) |= φ2 ∧

∧ ∀j < k, (xj , xj+1, . . .) |= φ1
σ |= Fφ ⇔ ∃k ∈ N0, (xk , xk+1, . . .) |= φ
σ |= Gφ ⇔ ∀k ∈ N0, (xk , xk+1, . . .) |= φ

Boolean Networks in Systems Life Sciences 8/15

LTL Visually

φ = p
p

. . .

φ = Xφ′
φ′

. . .

φ = Fφ′ . . .

φ′

. . .

φ = Gφ′
φ′ φ′ φ′ φ′ φ′ φ′

. . .

φ = φ1Uφ2

φ1 φ1

. . .

φ1 φ2

. . .

Boolean Networks in Systems Life Sciences 9/15

LTL Example

f1(x) = x3 ∧ (¬x1 ∨ ¬x2)
f2(x) = x1 ∧ x3

f3(x) = x1 ∨ x2 ∨ x3 000 100

010

001

110

101

011 111

Examples:

• F(¬x1) – “Eventually, variable 1 will be inactive”;

• G(x3) – “Variable 3 always stays active”;

• F(G(x3)) – “Eventually, variable 3 will activate and will stay active
forever”;

• G(F(¬x2)) – “Variable 2 will be inactive infinitely often”;

• x1 U x3 – “Variable 1 stays active until variable 3 becomes active”;

Boolean Networks in Systems Life Sciences 10/15

Computational Tree Logic
Syntax:

Φ ::= ⊤ | p ∈ P | ¬Φ | Φ1 ∧ Φ2 | ∃φ | ∀φ

φ ::= XΦ | Φ1 U Φ2(| FΦ | GΦ)

Semantics:

x |= ⊤
x |= p ⇔ x |= p
x |= ¬Φ ⇔ x ̸|= Φ
x |= Φ1 ∧ Φ2 ⇔ x |= Φ1 ∧ x |= Φ2
x |= ∃φ ⇔ ∃σ ∈ S(x), σ |= φ
x |= ∀φ ⇔ ∀σ ∈ S(x), σ |= φ

σ |= XΦ ⇔ x1 |= Φ
σ |= Φ1 U Φ2 ⇔ ∃k ∈ N0, xk |= Φ2 ∧ ∀j < k, xj |= Φ1
σ |= FΦ ⇔ ∃k ∈ N0, xk |= Φ
σ |= GΦ ⇔ ∀k ∈ N0, xk |= Φ

Boolean Networks in Systems Life Sciences 11/15

CTL Visually

∃Fred ∃Gred ∃tealU red

∀Fred ∀Gred ∀tealU red

Boolean Networks in Systems Life Sciences 12/15

CTL Example

f1(x) = x3 ∧ (¬x1 ∨ ¬x2)
f2(x) = x1 ∧ x3

f3(x) = x1 ∨ x2 ∨ x3 000 100

010

001

110

101

011 111

Examples:

• ∀F(¬x1) – “Eventually, variable 1 will be inactive”;

• ∀G(x3) – “Variable 3 always stays active”;

• ∃F(∀G(x3)) – “There exists a path to a state in which variable 3 is
active and cannot be deactivated”;

• ∀G(∃F(¬x2)) – “Along any path, it is always possible to deactivate
variable 2”;

• ∃x1 U x3 – “There exists a path along which variable 1 stays active
until variable 3 becomes active”;

Boolean Networks in Systems Life Sciences 13/15

CTL∗

Syntax:

Φ ::= ⊤ | p ∈ P | ¬Φ | Φ1 ∧ Φ2 | ∃φ | ∀φ

φ ::= Φ | ¬φ | φ1 ∧ φ2 | Xφ | φ1 U φ2

Semantics:

x |= ⊤
x |= p ⇔ x |= p
x |= ¬Φ ⇔ x ̸|= Φ
x |= Φ1 ∧ Φ2 ⇔ x |= Φ1 ∧ x |= Φ2
x |= ∃φ ⇔ ∃σ ∈ S(x), σ |= φ
x |= ∀φ ⇔ ∀σ ∈ S(x), σ |= φ

σ |= Φ ⇔ x0 |= Φ
σ |= ¬φ ⇔ σ ̸|= φ
σ |= φ1 ∧ φ2 ⇔ σ |= φ1 ∧ σ |= φ2
σ |= Xφ ⇔ (x1, x2, . . .) |= φ
σ |= φ1 U φ2 ⇔ ∃k ∈ N0, (xk , xk+1, . . .) |= φ2 ∧

∧ ∀j < k, (xj , xj+1, . . .) |= φ1
Boolean Networks in Systems Life Sciences 14/15

Fairness
Example:

1

2

3

f1(x) = x3

f2(x) = x1

f3(x) = x2

000 100

010

001

110

101

011 111

Fairness constraints are put in place to make sure “everybody gets their
turn”.

Different fairness constraints are used, depending on the application
scenario, but the general intuition is that if a transition can be taken
infinitely often along a run, then it will eventually be traversed.

Boolean Networks in Systems Life Sciences 15/15

