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Formal Verification
Given a model of a dynamical system (complex system);
And a set of desirable properties (specifications, observations, . . . );
The goal is to determine whether the model satisfies the properties.

Automatic Verification:

Testing – Identify critical scenarios to test model executions on.
Non-exhaustive: if an execution fails a test, we know the model does not
satisfy our properties, but if all succeed, we cannot rule out there is
another execution which would fail.

Static Analysis – Avoids exploration of dynamics (transition system).
Typically provides only partial results (approximation).

Dynamic Analysis – Exhaustive exploration of the transition system.
Formal reasoning about dynamic properties (evolution in time) is possible
using temporal logics. Such temporal properties can be automatically
verified by model checking.
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Temporal Logic
Formal (unambiguous) reasoning about properties related to the
successive change of system states (variables).

Temporal logics we focus on:

• Linear Temporal Logic (LTL) – Reasoning on traces of the model.

• Computational Tree Logic (CTL) – Reasoning on execution trees.

• (CTL∗ – CTL enriched to be able to express everything that’s
possible in LTL.)

Other temporal logics:

• Higher expressivity – allows more complex properties.

• Include time – allows specification of time-bound properties.

• Probabilities – allows properties about probabilities of behaviours.
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Traces
For a transition system (S, →), a trace is an (infinite) sequence of
configurations σ = (x0, x1, x2, . . . ) such that ∀k > 0, xk−1 → xk .

For a configuration x ∈ Bn, let S(x) be the set of all traces that originate
in x.

Example:

f1(x) = x3 ∧ (¬x1 ∨ ¬x2)
f2(x) = x1 ∧ x3

f3(x) = x1 ∨ x2 ∨ x3
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011 111

σ1 = (110, 100, 000)
σ2 = (101, [111, 011]ω)
σ3 = (001, 101, 111)

. . .

Sometimes it’s useful to consider only infinite traces. To preserve
reachability, we include the transition x → x for each fixed point x.
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Execution Trees
“All traces from S(x) bundled by prefixes.”

Formally, a connected acyclic graph (V , E ) with a labelling function
λ : V → Bn mapping the vertices to the configurations.

“Unfolding of the transition system.”

Given an initial configuration x, the execution tree can be intuited
inductively as follows:

1. Add the root vr to V with λ(vr ) = x and initialise the set of
unprocessed vertices V ′ = {vr };

2. While V ′ is not empty, take v ∈ V ′ and for each y ∈ Bn such that
λ(v) → y, add a new node v ′ with λ(v ′) = y to both V , V ′, and an
edge (v , v ′) to E ;

Comparison to traces:
For a given root, the execution tree is unique.
A trace corresponds to a path in the tree starting from the root.
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Execution Trees – Example

f1(x) = x3 ∧ (¬x1 ∨ ¬x2)
f2(x) = x1 ∧ x3
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Atomic Propositions
“A set of properties that characterise the configurations of the system.”

Formally, we define a finite set of atomic propositions P = {p0, . . . , pk},
k ∈ N and a mapping α : Bn → 2P which maps each configuration to a
set of atomic propositions “valid” in the configuration.

A configuration x ∈ Bn satisfies a proposition p ∈ P, x |= p, if and only if
p ∈ α(x).

Examples:

• xi “Variable i is active”;

• xi + xj + xk ≥ 2 “At least two of the variables i , j , k are active”;

• ∀i ∈ W ⊆ {1, . . . , n}, xi = 0 “None of the variables in W is active”;

• x ∈ A “Is part of the attractor A”;
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Linear Temporal Logic
Syntax:

φ ::= ⊤ | p ∈ P | ¬φ | φ1 ∧ φ2 | Xφ | φ1 U φ2(| Fφ | Gφ)

Semantics:

σ |= ⊤
σ |= p ⇔ x0 |= p
σ |= ¬φ ⇔ σ ̸|= φ
σ |= φ1 ∧ φ2 ⇔ σ |= φ1 ∧ σ |= φ2
σ |= Xφ ⇔ (x1, x2, . . . ) |= φ
σ |= φ1 U φ2 ⇔ ∃k ∈ N0, (xk , xk+1, . . . ) |= φ2 ∧

∧ ∀j < k, (xj , xj+1, . . . ) |= φ1
σ |= Fφ ⇔ ∃k ∈ N0, (xk , xk+1, . . . ) |= φ
σ |= Gφ ⇔ ∀k ∈ N0, (xk , xk+1, . . . ) |= φ
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LTL Visually

φ = p
p
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LTL Example

f1(x) = x3 ∧ (¬x1 ∨ ¬x2)
f2(x) = x1 ∧ x3

f3(x) = x1 ∨ x2 ∨ x3 000 100
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Examples:

• F(¬x1) – “Eventually, variable 1 will be inactive”;

• G(x3) – “Variable 3 always stays active”;

• F(G(x3)) – “Eventually, variable 3 will activate and will stay active
forever”;

• G(F(¬x2)) – “Variable 2 will be inactive infinitely often”;

• x1 U x3 – “Variable 1 stays active until variable 3 becomes active”;
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Computational Tree Logic
Syntax:

Φ ::= ⊤ | p ∈ P | ¬Φ | Φ1 ∧ Φ2 | ∃φ | ∀φ

φ ::= XΦ | Φ1 U Φ2(| FΦ | GΦ)

Semantics:

x |= ⊤
x |= p ⇔ x |= p
x |= ¬Φ ⇔ x ̸|= Φ
x |= Φ1 ∧ Φ2 ⇔ x |= Φ1 ∧ x |= Φ2
x |= ∃φ ⇔ ∃σ ∈ S(x), σ |= φ
x |= ∀φ ⇔ ∀σ ∈ S(x), σ |= φ

σ |= XΦ ⇔ x1 |= Φ
σ |= Φ1 U Φ2 ⇔ ∃k ∈ N0, xk |= Φ2 ∧ ∀j < k, xj |= Φ1
σ |= FΦ ⇔ ∃k ∈ N0, xk |= Φ
σ |= GΦ ⇔ ∀k ∈ N0, xk |= Φ
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CTL Visually

∃Fred ∃Gred ∃tealU red

∀Fred ∀Gred ∀tealU red
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CTL Example

f1(x) = x3 ∧ (¬x1 ∨ ¬x2)
f2(x) = x1 ∧ x3

f3(x) = x1 ∨ x2 ∨ x3 000 100

010

001

110

101

011 111

Examples:

• ∀F(¬x1) – “Eventually, variable 1 will be inactive”;

• ∀G(x3) – “Variable 3 always stays active”;

• ∃F(∀G(x3)) – “There exists a path to a state in which variable 3 is
active and cannot be deactivated”;

• ∀G(∃F(¬x2)) – “Along any path, it is always possible to deactivate
variable 2”;

• ∃x1 U x3 – “There exists a path along which variable 1 stays active
until variable 3 becomes active”;
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CTL∗

Syntax:

Φ ::= ⊤ | p ∈ P | ¬Φ | Φ1 ∧ Φ2 | ∃φ | ∀φ

φ ::= Φ | ¬φ | φ1 ∧ φ2 | Xφ | φ1 U φ2

Semantics:

x |= ⊤
x |= p ⇔ x |= p
x |= ¬Φ ⇔ x ̸|= Φ
x |= Φ1 ∧ Φ2 ⇔ x |= Φ1 ∧ x |= Φ2
x |= ∃φ ⇔ ∃σ ∈ S(x), σ |= φ
x |= ∀φ ⇔ ∀σ ∈ S(x), σ |= φ

σ |= Φ ⇔ x0 |= Φ
σ |= ¬φ ⇔ σ ̸|= φ
σ |= φ1 ∧ φ2 ⇔ σ |= φ1 ∧ σ |= φ2
σ |= Xφ ⇔ (x1, x2, . . . ) |= φ
σ |= φ1 U φ2 ⇔ ∃k ∈ N0, (xk , xk+1, . . . ) |= φ2 ∧

∧ ∀j < k, (xj , xj+1, . . . ) |= φ1
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Fairness
Example:

1
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f1(x) = x3

f2(x) = x1

f3(x) = x2
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Fairness constraints are put in place to make sure “everybody gets their
turn”.

Different fairness constraints are used, depending on the application
scenario, but the general intuition is that if a transition can be taken
infinitely often along a run, then it will eventually be traversed.
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