
Model Checking

Juri Kolčák

Friday 9th January, 2026

Automated Verification
Model checking is a general framework for computationally verifying
linear-time properties (specified in temporal logic), on a transition system.

Recall that for a Boolean network of dimension n, the transition system is
of size 2n. Automated verification is therefore paramount.

Model checking is typically “the last line of defence”, and one would
attempt to reduce the transition system beforehand.

• Static analysis;

• Model reduction (trap spaces, merging/removing variables, . . .);

• Decomposition;

• Symbolic representation;

• . . .

Boolean Networks in Systems Life Sciences 2/19

Kripke Structure
A Kripke structure is a tuple T = (S, →, I, P, α) consisting of:

• A transition system (S, →);

• A set of initial states I ⊆ S;

• A set of atomic propositions P;

• A function α : S → 2P , mapping each configuration to a set of
atomic propositions.

For each trace σ = (x0, x1, x2, . . .) of the transition system (S, →), the
corresponding trace of the Kripke structure T is
π = (α(x0), α(x1), α(x2), . . .).

A trace σ is initial, if x0 ∈ I.

S(T) is the set of all the initial and infinite (maximal) traces of the
Kripke structure.

Boolean Networks in Systems Life Sciences 3/19

Kripke Structure
A Kripke structure is a tuple T = (S, →, I, P, α) consisting of:

• A transition system (S, →);

• A set of initial states I ⊆ S;

• A set of atomic propositions P;

• A function α : S → 2P , mapping each configuration to a set of
atomic propositions.

For each trace σ = (x0, x1, x2, . . .) of the transition system (S, →), the
corresponding trace of the Kripke structure T is
π = (α(x0), α(x1), α(x2), . . .).

A trace σ is initial, if x0 ∈ I.

S(T) is the set of all the initial and infinite (maximal) traces of the
Kripke structure.

Boolean Networks in Systems Life Sciences 3/19

Linear-time Properties
A linear-time (LT) property is a language L ⊆ (2P)ω of infinite words
over the alphabet Σ = 2P .

L is the language of all the “good” behaviours, that satisfy the desired
property.

A transition system (Kripke structure) T satisfies the LT property L,
T |= L, if and only if S(T) ⊆ L.

Boolean Networks in Systems Life Sciences 4/19

Invariant Properties
A property Linv is an invariant if there exists a propositional logic formula
Φ over the atomic propositions P, the invariant condition, such that:

Linv = {P0P1P2 · · · ∈
(
2P)ω | ∀i ∈ N0, Pi |= Φ}

Let R(T) = {x ∈ S | ∃y ∈ I, y →∗ x} be the set of all configurations
reachable from at least one of the initial configurations.

A transition system T satisfies the invariant property Linv , T |= Linv , if
an only if for all x ∈ R(T), x |= Φ.

Example:

G(x1 ∨ x2)

Boolean Networks in Systems Life Sciences 5/19

Invariant Properties
A property Linv is an invariant if there exists a propositional logic formula
Φ over the atomic propositions P, the invariant condition, such that:

Linv = {P0P1P2 · · · ∈
(
2P)ω | ∀i ∈ N0, Pi |= Φ}

Let R(T) = {x ∈ S | ∃y ∈ I, y →∗ x} be the set of all configurations
reachable from at least one of the initial configurations.

A transition system T satisfies the invariant property Linv , T |= Linv , if
an only if for all x ∈ R(T), x |= Φ.

Example:

G(x1 ∨ x2)

Boolean Networks in Systems Life Sciences 5/19

Safety Properties
In simple terms, safety properties say: “something bad never happens”.

An LT property Lsafe is a safety property if for all words
σ ∈ (2P)ω \ Lsafe , there exists a finite prefix σ̂ of σ which is not prefix of
any word in Lsafe , Lsafe ∩ {σ′ ∈ (2P)ω | σ̂ is a prefix of σ′} = ∅.

Any such finite word σ̂ is a bad prefix for the safety property Lsafe ,
describing a part of behaviour in which the safety property is violated, or
that guarantees its future violation.

A bad prefix σ̂ is minimal if there is no proper prefix of σ̂ which is also
bad for Lsafe .

We use Bad(Lsafe) to denote the set of all bad prefixes of Lsafe , and
MinBad(Lsafe) to denote the set of all minimal bad prefixes of Lsafe .

Boolean Networks in Systems Life Sciences 6/19

Safety Properties – Example
Every invariant property is a safety property.

Consider a Boolean network of dimension at least 2. The following LTL
formula defines a safety property:

G((¬x2 ∧ X(x2)) ⇒ x1)

π1 = ({x1}, {x1, x2}, {x1, x2}, . . .);

π2 = ({x1}, {x2}, {x2}, . . .);

π3 = ({x1}, ∅, {x2}, {x2}, . . .);

π4 = ({x1}, {x2}, ∅, {x1, x2}, {x1, x2}, . . .);

Boolean Networks in Systems Life Sciences 7/19

Safety Properties – Example
Every invariant property is a safety property.

Consider a Boolean network of dimension at least 2. The following LTL
formula defines a safety property:

G((¬x2 ∧ X(x2)) ⇒ x1)

π1 = ({x1}, {x1, x2}, {x1, x2}, . . .);

π2 = ({x1}, {x2}, {x2}, . . .);

π3 = ({x1}, ∅, {x2}, {x2}, . . .);

π4 = ({x1}, {x2}, ∅, {x1, x2}, {x1, x2}, . . .);

Boolean Networks in Systems Life Sciences 7/19

Safety Properties – Example
Every invariant property is a safety property.

Consider a Boolean network of dimension at least 2. The following LTL
formula defines a safety property:

G((¬x2 ∧ X(x2)) ⇒ x1)

π1 = ({x1}, {x1, x2}, {x1, x2}, . . .);

π2 = ({x1}, {x2}, {x2}, . . .);

π3 = ({x1}, ∅, {x2}, {x2}, . . .);

π4 = ({x1}, {x2}, ∅, {x1, x2}, {x1, x2}, . . .);

Boolean Networks in Systems Life Sciences 7/19

Safety Properties – Example
Every invariant property is a safety property.

Consider a Boolean network of dimension at least 2. The following LTL
formula defines a safety property:

G((¬x2 ∧ X(x2)) ⇒ x1)

π1 = ({x1}, {x1, x2}, {x1, x2}, . . .);

π2 = ({x1}, {x2}, {x2}, . . .);

π3 = ({x1}, ∅, {x2}, {x2}, . . .);

π4 = ({x1}, {x2}, ∅, {x1, x2}, {x1, x2}, . . .);

Boolean Networks in Systems Life Sciences 7/19

Safety Properties – Example
Every invariant property is a safety property.

Consider a Boolean network of dimension at least 2. The following LTL
formula defines a safety property:

G((¬x2 ∧ X(x2)) ⇒ x1)

π1 = ({x1}, {x1, x2}, {x1, x2}, . . .);

π2 = ({x1}, {x2}, {x2}, . . .);

π3 = ({x1}, ∅, {x2}, {x2}, . . .);

π4 = ({x1}, {x2}, ∅, {x1, x2}, {x1, x2}, . . .);

Boolean Networks in Systems Life Sciences 7/19

Safety Properties – Example
Every invariant property is a safety property.

Consider a Boolean network of dimension at least 2. The following LTL
formula defines a safety property:

G((¬x2 ∧ X(x2)) ⇒ x1)

π1 = ({x1}, {x1, x2}, {x1, x2}, . . .);

π2 = ({x1}, {x2}, {x2}, . . .);

π3 = ({x1}, ∅, {x2}, {x2}, . . .);

π4 = ({x1}, {x2}, ∅, {x1, x2}, {x1, x2}, . . .);

Boolean Networks in Systems Life Sciences 7/19

Safety Properties – Example
Every invariant property is a safety property.

Consider a Boolean network of dimension at least 2. The following LTL
formula defines a safety property:

G((¬x2 ∧ X(x2)) ⇒ x1)

π1 = ({x1}, {x1, x2}, {x1, x2}, . . .);

π2 = ({x1}, {x2}, {x2}, . . .);

π3 = ({x1}, ∅, {x2}, {x2}, . . .);

π4 = ({x1}, {x2}, ∅, {x1, x2}, {x1, x2}, . . .);

Boolean Networks in Systems Life Sciences 7/19

Safety Properties – Alternative Definition
Let σ ∈

(
2P)ω be an arbitrary word, we formally define the set of all

finite prefixes of σ as follows:

pref(σ) ∆=
{

(σ0, σ1, . . . , σk−1, σk) | k ∈ N0
}

The definition of finite prefixes extends naturally to languages:

pref(L) ∆=
⋃
σ∈L

pref(σ)

Finally, we define the closure of a language to contain all the words that
share finite prefixes with the language:

closure(L) ∆=
{

σ ∈
(
2P)ω | pref(σ) ⊆ pref(L)

}
A property Lsafe is a safety property if and only if closure(Lsafe) = Lsafe .

Boolean Networks in Systems Life Sciences 8/19

Liveness Properties
In simple terms, liveness properties say: “something good eventually
happens”.

An LT property Llive is a liveness property, if and only if
pref(Llive) =

(
2P)∗.

Example:

F(¬x1 ∧ x2)

Boolean Networks in Systems Life Sciences 9/19

Liveness Properties
In simple terms, liveness properties say: “something good eventually
happens”.

An LT property Llive is a liveness property, if and only if
pref(Llive) =

(
2P)∗.

Example:

F(¬x1 ∧ x2)

Boolean Networks in Systems Life Sciences 9/19

Liveness and Safety

• Are there LT properties that are both safety and liveness properties?

Yes! But only one,
(
2P)ω.

• Is every LT property either a safety property or a liveness property?

No, but every LT property is an intersection of a safety and a
liveness property.

Example:

x1 U x2

• x1 stays active until x2 activates;

Lsafe such that
MinBad(Lsafe) =

{
([{x1, ¬x2}]k , {¬x1, ¬x2}) | k ∈ N0

}
;

• x2 eventually activates;

Llive given by F(x2);

Boolean Networks in Systems Life Sciences 10/19

Liveness and Safety

• Are there LT properties that are both safety and liveness properties?

Yes! But only one,
(
2P)ω.

• Is every LT property either a safety property or a liveness property?

No, but every LT property is an intersection of a safety and a
liveness property.

Example:

x1 U x2

• x1 stays active until x2 activates;

Lsafe such that
MinBad(Lsafe) =

{
([{x1, ¬x2}]k , {¬x1, ¬x2}) | k ∈ N0

}
;

• x2 eventually activates;

Llive given by F(x2);

Boolean Networks in Systems Life Sciences 10/19

Liveness and Safety

• Are there LT properties that are both safety and liveness properties?

Yes! But only one,
(
2P)ω.

• Is every LT property either a safety property or a liveness property?

No, but every LT property is an intersection of a safety and a
liveness property.

Example:

x1 U x2

• x1 stays active until x2 activates;

Lsafe such that
MinBad(Lsafe) =

{
([{x1, ¬x2}]k , {¬x1, ¬x2}) | k ∈ N0

}
;

• x2 eventually activates;

Llive given by F(x2);

Boolean Networks in Systems Life Sciences 10/19

Liveness and Safety

• Are there LT properties that are both safety and liveness properties?

Yes! But only one,
(
2P)ω.

• Is every LT property either a safety property or a liveness property?

No, but every LT property is an intersection of a safety and a
liveness property.

Example:

x1 U x2

• x1 stays active until x2 activates;

Lsafe such that
MinBad(Lsafe) =

{
([{x1, ¬x2}]k , {¬x1, ¬x2}) | k ∈ N0

}
;

• x2 eventually activates;

Llive given by F(x2);

Boolean Networks in Systems Life Sciences 10/19

Liveness and Safety

• Are there LT properties that are both safety and liveness properties?

Yes! But only one,
(
2P)ω.

• Is every LT property either a safety property or a liveness property?

No, but every LT property is an intersection of a safety and a
liveness property.

Example:

x1 U x2

• x1 stays active until x2 activates;

Lsafe such that
MinBad(Lsafe) =

{
([{x1, ¬x2}]k , {¬x1, ¬x2}) | k ∈ N0

}
;

• x2 eventually activates;

Llive given by F(x2);

Boolean Networks in Systems Life Sciences 10/19

Liveness and Safety

• Are there LT properties that are both safety and liveness properties?

Yes! But only one,
(
2P)ω.

• Is every LT property either a safety property or a liveness property?

No, but every LT property is an intersection of a safety and a
liveness property.

Example:

x1 U x2

• x1 stays active until x2 activates;

Lsafe such that
MinBad(Lsafe) =

{
([{x1, ¬x2}]k , {¬x1, ¬x2}) | k ∈ N0

}
;

• x2 eventually activates;

Llive given by F(x2);
Boolean Networks in Systems Life Sciences 10/19

Decomposition Theorem
For any LT property L, there exists a safety property Lsafe and a liveness
property Llive such that L = Lsafe ∩ Llive .

First, distributivity of union over closure:

closure(L) ∪ closure(L′) = closure(L ∪ L′)

Decomposition Theorem proof by construction:

L = closure(L) ∩
(

L ∪
((

2P)ω \ closure(L)
))

Boolean Networks in Systems Life Sciences 11/19

Decomposition Theorem
For any LT property L, there exists a safety property Lsafe and a liveness
property Llive such that L = Lsafe ∩ Llive .

First, distributivity of union over closure:

closure(L) ∪ closure(L′) = closure(L ∪ L′)

Decomposition Theorem proof by construction:

L = closure(L) ∩
(

L ∪
((

2P)ω \ closure(L)
))

Boolean Networks in Systems Life Sciences 11/19

Finite Automata
A nondeterministic finite automaton (NFA) is a tuple
A = (Q, Σ, δ, Q0, F) where:

• Q is a finite set of states;

• Σ is an alphabet (for us Σ = 2P);

• δ : Q × Σ → 2Q is a transition function;

• Q0 ⊆ Q is a set of initial states;

• F ⊆ Q is the set of accepting/final states;

Given a finite word w = w1w2 . . . wn ∈ Σ∗, a run of A for w is a
sequence of states (q0, q1, . . . , qn) such that:

• q0 ∈ Q0;

• For all 0 ≤ i < n, qi+1 ∈ δ(qi , wi+1) (we write qi
wi+1−−→ qi+1);

A run is accepting if it ends in a final state (qn ∈ F).
Boolean Networks in Systems Life Sciences 12/19

Regular Languages
An NFA A = (Q, Σ, δ, Q0, F) defines a language of accepted words
L(A) = {w ∈ Σ∗| there exists an accepting run of A for w}.

We say the language L(A) is accepted by the automaton A.

A language L which is accepted by some NFA A, L = L(A), is called
regular.

Example:

L ((a | b)∗b(a | b)) for Σ = {a, b}

q0 q1 q2
b

a

b

a

b

Boolean Networks in Systems Life Sciences 13/19

Regular Languages
An NFA A = (Q, Σ, δ, Q0, F) defines a language of accepted words
L(A) = {w ∈ Σ∗| there exists an accepting run of A for w}.

We say the language L(A) is accepted by the automaton A.

A language L which is accepted by some NFA A, L = L(A), is called
regular.

Example:

L ((a | b)∗b(a | b)) for Σ = {a, b}

q0 q1 q2
b

a

b

a

b

Boolean Networks in Systems Life Sciences 13/19

Regular Languages
An NFA A = (Q, Σ, δ, Q0, F) defines a language of accepted words
L(A) = {w ∈ Σ∗| there exists an accepting run of A for w}.

We say the language L(A) is accepted by the automaton A.

A language L which is accepted by some NFA A, L = L(A), is called
regular.

Example:

L ((a | b)∗b(a | b)) for Σ = {a, b}

q0 q1 q2
b

a

b

a

b

Boolean Networks in Systems Life Sciences 13/19

Regular Safety Properties
A safety property Lsafe is regular, if the language Bad(Lsafe) is regular,
that is, if there exists an NFA A such that L(A) = Bad(Lsafe).

Bad(Lsafe) is regular if and only if MinBad(Lsafe) is regular.

Example:

G ((¬x2 ∧ X(x2)) ⇒ x1)

q0 q1 q2

¬x1 ∧ ¬x2

x1 ∧ ¬x2

x2

x1 ∨ x2 ¬x1 ∧ ¬x2

Boolean Networks in Systems Life Sciences 14/19

Regular Safety Properties
A safety property Lsafe is regular, if the language Bad(Lsafe) is regular,
that is, if there exists an NFA A such that L(A) = Bad(Lsafe).

Bad(Lsafe) is regular if and only if MinBad(Lsafe) is regular.

Example:

G ((¬x2 ∧ X(x2)) ⇒ x1)

q0 q1 q2

¬x1 ∧ ¬x2

x1 ∧ ¬x2

x2

x1 ∨ x2 ¬x1 ∧ ¬x2

Boolean Networks in Systems Life Sciences 14/19

Regular Safety Properties
A safety property Lsafe is regular, if the language Bad(Lsafe) is regular,
that is, if there exists an NFA A such that L(A) = Bad(Lsafe).

Bad(Lsafe) is regular if and only if MinBad(Lsafe) is regular.

Example:

G ((¬x2 ∧ X(x2)) ⇒ x1)

q0 q1 q2

¬x1 ∧ ¬x2

x1 ∧ ¬x2

x2

x1 ∨ x2 ¬x1 ∧ ¬x2

Boolean Networks in Systems Life Sciences 14/19

Model Checking Regular Safety Properties
Let T = (S, →, I, P, α) be a transition system and let
A = (Q, 2P , δ, Q0, F) an NFA such that Q0 ∩ F = ∅.
Then their product is a transition system T ⊗ A = (S ′, →′, I ′, P ′, α′)
where:

• S ′ = S × Q;
• →′⊆ (S × Q) × (S × Q) such that

(x, q) → (x′, q′) ⇔ x → x′ ∧ q α(x′)−−−→ q′;

• I ′ =
{

(x, q) | x ∈ I ∧ ∃q0 ∈ Q0, q0
α(x)−−→ q

}
;

• P ′ = Q;
• α′ : S × Q → 2Q such that α′ : (x, q) 7→ {q};

Given a regular safety property Lsafe and an NFA A such that
L(A) = MinBad(Lsafe):

T |= Lsafe ⇐⇒ T ⊗A |= Linv = {P0, P1, P2 · · · ∈
(
2P)ω | ∀i ∈ N0, Pi |= ¬F}

Boolean Networks in Systems Life Sciences 15/19

Model Checking Regular Safety Properties
Let T = (S, →, I, P, α) be a transition system and let
A = (Q, 2P , δ, Q0, F) an NFA such that Q0 ∩ F = ∅.
Then their product is a transition system T ⊗ A = (S ′, →′, I ′, P ′, α′)
where:

• S ′ = S × Q;
• →′⊆ (S × Q) × (S × Q) such that

(x, q) → (x′, q′) ⇔ x → x′ ∧ q α(x′)−−−→ q′;

• I ′ =
{

(x, q) | x ∈ I ∧ ∃q0 ∈ Q0, q0
α(x)−−→ q

}
;

• P ′ = Q;
• α′ : S × Q → 2Q such that α′ : (x, q) 7→ {q};

Given a regular safety property Lsafe and an NFA A such that
L(A) = MinBad(Lsafe):

T |= Lsafe ⇐⇒ T ⊗A |= Linv = {P0, P1, P2 · · · ∈
(
2P)ω | ∀i ∈ N0, Pi |= ¬F}

Boolean Networks in Systems Life Sciences 15/19

Büchi Automata
A nondeterministic Büchi automaton (NBA) is a tuple
A = (Q, Σ, δ, Q0, F) where:

• Q is a finite set of states;

• Σ is an alphabet (for us Σ = 2P);

• δ : Q × Σ → 2Q is a transition function;

• Q0 ⊆ Q is a set of initial states;

• F ⊆ Q is the set of accepting/final states;

Given an infinite word σ = σ0σ1σ2 · · · ∈ Σω, a run of A for σ is an
infinite sequence of states (q0, q1, q2, . . .) such that:

• q0 ∈ Q0;

• For all 0 ≤ i , qi
σi−→ qi+1;

A run is accepting if it visits an accepting state infinitely often.
Boolean Networks in Systems Life Sciences 16/19

ω-Regular Languages
A Büchi automaton A = (Q, Σ, δ, Q0, F) defines a language of accepted
words L(A) = {σ ∈ Σω| there exists an accepting run of A for σ}.

We say the language L(A) is accepted by the automaton A.

A language L which is accepted by some Büchi automaton A, L = L(A),
is called ω-regular.

Example:

L (a+b(b+ | ba+b)ω) for Σ = {a, b}

q0 q1 q2
a b

b

a b

Boolean Networks in Systems Life Sciences 17/19

ω-Regular Languages
A Büchi automaton A = (Q, Σ, δ, Q0, F) defines a language of accepted
words L(A) = {σ ∈ Σω| there exists an accepting run of A for σ}.

We say the language L(A) is accepted by the automaton A.

A language L which is accepted by some Büchi automaton A, L = L(A),
is called ω-regular.

Example:

L (a+b(b+ | ba+b)ω) for Σ = {a, b}

q0 q1 q2
a b

b

a b

Boolean Networks in Systems Life Sciences 17/19

ω-Regular Languages
A Büchi automaton A = (Q, Σ, δ, Q0, F) defines a language of accepted
words L(A) = {σ ∈ Σω| there exists an accepting run of A for σ}.

We say the language L(A) is accepted by the automaton A.

A language L which is accepted by some Büchi automaton A, L = L(A),
is called ω-regular.

Example:

L (a+b(b+ | ba+b)ω) for Σ = {a, b}

q0 q1 q2
a b

b

a b

Boolean Networks in Systems Life Sciences 17/19

Persistence Properties
An LT property Lpers is a persistence property if there exists a
propositional logic formula Φ over the atomic propositions P, such that:

Lpers =
{

P0P1P2 · · · ∈
(
2P)ω | ∃j ∈ N0, ∀i ≥ j , Pi |= Φ

}
The persistence property Lpers is given by the LTL formula F(G(Φ)).

T |= Lpers can be verified by searching for “lasso”, a reachable state x
such that x ̸|= Φ which lies on a cycle.

Example:

F(G(x1 ∨ x2))

Boolean Networks in Systems Life Sciences 18/19

Persistence Properties
An LT property Lpers is a persistence property if there exists a
propositional logic formula Φ over the atomic propositions P, such that:

Lpers =
{

P0P1P2 · · · ∈
(
2P)ω | ∃j ∈ N0, ∀i ≥ j , Pi |= Φ

}
The persistence property Lpers is given by the LTL formula F(G(Φ)).

T |= Lpers can be verified by searching for “lasso”, a reachable state x
such that x ̸|= Φ which lies on a cycle.

Example:

F(G(x1 ∨ x2))

Boolean Networks in Systems Life Sciences 18/19

Model Checking ω-Regular Properties
Let T = (S, →, I, P, α) be a transition system and let
A = (Q, 2P , δ, Q0, F) a non-blocking Büchi automaton.
Then their product is a transition system T ⊗ A = (S × Q, →′, I ′, Q, α′)
where:

• →′⊆ (S × Q) × (S × Q) such that
(x, q) → (x′, q′) ⇔ x → x′ ∧ q α(x′)−−−→ q′;

• I ′ =
{

(x, q) | x ∈ I ∧ ∃q0 ∈ Q0, q0
α(x)−−→ q

}
;

• α′ : S × Q → 2Q such that α′ : (x, q) 7→ {q};

Given an ω-regular property L and a Büchi automaton A such that
L(A) =

(
2P)ω \ L:

T |= L ⇐⇒ T ⊗A |= Lpers = {P0P1P2 · · · ∈
(
2P)ω | ∃j ∈ N0, ∀i ≥ j , Pi |= ¬F}

Boolean Networks in Systems Life Sciences 19/19

Model Checking ω-Regular Properties
Let T = (S, →, I, P, α) be a transition system and let
A = (Q, 2P , δ, Q0, F) a non-blocking Büchi automaton.
Then their product is a transition system T ⊗ A = (S × Q, →′, I ′, Q, α′)
where:

• →′⊆ (S × Q) × (S × Q) such that
(x, q) → (x′, q′) ⇔ x → x′ ∧ q α(x′)−−−→ q′;

• I ′ =
{

(x, q) | x ∈ I ∧ ∃q0 ∈ Q0, q0
α(x)−−→ q

}
;

• α′ : S × Q → 2Q such that α′ : (x, q) 7→ {q};

Given an ω-regular property L and a Büchi automaton A such that
L(A) =

(
2P)ω \ L:

T |= L ⇐⇒ T ⊗A |= Lpers = {P0P1P2 · · · ∈
(
2P)ω | ∃j ∈ N0, ∀i ≥ j , Pi |= ¬F}

Boolean Networks in Systems Life Sciences 19/19

