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Automated Verification

Model checking is a general framework for computationally verifying
linear-time properties (specified in temporal logic), on a transition system.

Recall that for a Boolean network of dimension n, the transition system is
of size 2". Automated verification is therefore paramount.

Model checking is typically “the last line of defence”, and one would
attempt to reduce the transition system beforehand.
= Static analysis;
= Model reduction (trap spaces, merging/removing variables, ...);
= Decomposition;

= Symbolic representation;
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Kripke Structure

A Kripke structure is a tuple 7 = (S, —, I, P, ) consisting of:
= A transition system (S, —);
= A set of initial states /| C §;
= A set of atomic propositions P;

= A function a: S — 2P, mapping each configuration to a set of
atomic propositions.
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Kripke Structure

A Kripke structure is a tuple 7 = (S, —, I, P, ) consisting of:
= A transition system (S, —);
= A set of initial states / C S;
= A set of atomic propositions P;

= A function a: S — 2P, mapping each configuration to a set of
atomic propositions.

For each trace o = (x%,x!,x2,...) of the transition system (S, —), the
corresponding trace of the Kripke structure 7T is
7 = (a(x%), a(x!), a(x?),...).

A trace o is initial, if x° € /.

S(T) is the set of all the initial and infinite (maximal) traces of the
Kripke structure.
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Linear-time Properties

A linear-time (LT) property is a language L C (2F)% of infinite words
over the alphabet ¥ = 2F.

L is the language of all the “good” behaviours, that satisfy the desired
property.

A transition system (Kripke structure) 7 satisfies the LT property L,
T EL ifandonly if S(T) C L.
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Invariant Properties

A property L;,, is an invariant if there exists a propositional logic formula
® over the atomic propositions P, the invariant condition, such that:

Liny = {PoP1Ps--- € (2P)" | Vi € Ny, P; |= &}

Let R(T)={x€ S |3y € l,y =" x} be the set of all configurations
reachable from at least one of the initial configurations.

A transition system T satisfies the invariant property Lin,, T |E Liny, if
an only if for all x € R(T), x = ¢.

Boolean Networks in Systems Life Sciences 5/19



Invariant Properties

A property L;,, is an invariant if there exists a propositional logic formula
® over the atomic propositions P, the invariant condition, such that:

Liny = {PoP1Ps--- € (2P)" | Vi € Ny, P; |= &}

Let R(T)={x€ S |3y € l,y =" x} be the set of all configurations
reachable from at least one of the initial configurations.

A transition system T satisfies the invariant property Lin,, T |E Liny, if
an only if for all x € R(T), x = ¢.

EXAMPLE:

G(Xl V X2)
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Safety Properties
In simple terms, safety properties say: “something bad never happens”.
An LT property Lsafe is a safety property if for all words
o € (2P)¥ \ Lesre, there exists a finite prefix & of o which is not prefix of
any word in Lefe, Lsare N {0’ € (2P)% | 6 is a prefix of o'} = (.
Any such finite word & is a bad prefix for the safety property Lsafe,
describing a part of behaviour in which the safety property is violated, or

that guarantees its future violation.

A bad prefix 6 is minimal if there is no proper prefix of & which is also
bad for L., s.

We use Bad(Lsafe) to denote the set of all bad prefixes of Lg.f, and
MinBad(Lsafe) to denote the set of all minimal bad prefixes of Ls,fe.
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Safety Properties — Example

Every invariant property is a safety property.

Consider a Boolean network of dimension at least 2. The following LTL
formula defines a safety property:

G((ﬁXQ AN X(Xg)) = X]_)
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Safety Properties — Example

Every invariant property is a safety property.

Consider a Boolean network of dimension at least 2. The following LTL
formula defines a safety property:

G((ﬁXQ AN X(Xg)) = X]_)

T = ({Xl}, {Xl,Xg}7 {Xl,Xg}7 . );

Boolean Networks in Systems Life Sciences 7/19



Safety Properties — Example

Every invariant property is a safety property.

Consider a Boolean network of dimension at least 2. The following LTL
formula defines a safety property:

G((ﬁXQ AN X(Xg)) = X]_)

T = ({Xl}, {Xl,Xg}7 {Xl,Xg}7 . );
m = ({xa}; {2}, {x2},...);
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Safety Properties — Example

Every invariant property is a safety property.

Consider a Boolean network of dimension at least 2. The following LTL
formula defines a safety property:

G((ﬁXQ AN X(Xg)) = X]_)

T = ({Xl}, {Xl,Xg}7 {Xl,Xz}7 . );
m = ({xa}; {2}, {x2},...);
m3 = ({x1}, 0, {x2}, {x2},...);
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Safety Properties — Example

Every invariant property is a safety property.

Consider a Boolean network of dimension at least 2. The following LTL
formula defines a safety property:

G((ﬁXQ AN X(Xg)) = X]_)

T = ({Xl}, {Xl,Xg}7 {Xl,Xg}7 . );
m = ({xa}; {2}, {x2},...);
m = ({x1}, 0, {xo}, {x2},...);
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Safety Properties — Example

Every invariant property is a safety property.

Consider a Boolean network of dimension at least 2. The following LTL
formula defines a safety property:

G((ﬁXQ AN X(Xg)) = X]_)

= ({x}, {x1, %2}, {x1, x2},...);
= ({x1}, {x2}, {x2},...);
= ({x1}, 0, {x2}, {x2},...);
s = ({x1}, {2}, 0, {x1, %2}, {x1, %2}, ...);
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Safety Properties — Example

Every invariant property is a safety property.

Consider a Boolean network of dimension at least 2. The following LTL
formula defines a safety property:

G((ﬁXQ AN X(Xg)) = X]_)

= ({xa}, {x1, %2}, {x1, %2}, ...);
= ({x1}, {x2}, {x2},--.);
= ({xa}, 0, {x2}, {x2},--.);
ma = ({x1}, {x2}, 0, {x1,x2}, {x1, %2}, ... );
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Safety Properties — Alternative Definition

Let 0 € (2P)w be an arbitrary word, we formally define the set of all
finite prefixes of o as follows:

pref(o) 2 {(00,01, o o) ke No}

The definition of finite prefixes extends naturally to languages:

pref(L) = U pref(o)

Finally, we define the closure of a language to contain all the words that
share finite prefixes with the language:

closure(L) 2 {0 € (2P)w | pref(o) C pref(L)}

L. c C(OS\AYé (L’)
A property Lg,f is a safety property if and only if closure(Lsafe) = Lsafe.

Boolean Networks in Systems Life Sciences

8/19



Liveness Properties

In simple terms, liveness properties say: “something good eventually
happens".

An LT property Lje is a liveness property, if and only if
pref(LIive) - (QP) . C(oSv\r« (uu,,) = (LP)N
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Liveness Properties

In simple terms, liveness properties say: “something good eventually
happens".

An LT property Lje is a liveness property, if and only if
pref(Live) = (QP) )

EXAMPLE:

F(ﬁxl A\ X2)
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Liveness and Safety

= Are there LT properties that are both safety and liveness properties?

= s every LT property either a safety property or a liveness property?
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Liveness and Safety

= Are there LT properties that are both safety and liveness properties?
Yes! But only one, (2P)w.

= s every LT property either a safety property or a liveness property?
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Liveness and Safety

= Are there LT properties that are both safety and liveness properties?
Yes! But only one, (2P)w.
= s every LT property either a safety property or a liveness property?

No, but every LT property is an intersection of a safety and a
liveness property.
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Liveness and Safety

= Are there LT properties that are both safety and liveness properties?

Yes! But only one, (2P)w.

= s every LT property either a safety property or a liveness property?
No, but every LT property is an intersection of a safety and a
liveness property.

EXAMPLE:

X1 UX2

= X stays active until x, activates;

= X, eventually activates;
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Liveness and Safety

= Are there LT properties that are both safety and liveness properties?
Yes! But only one, (2P)w.
= s every LT property either a safety property or a liveness property?

No, but every LT property is an intersection of a safety and a
liveness property.

EXAMPLE:

X1 UX2

= X stays active until x, activates;

Lsare such that
MinBad(Lsafe) = {([{x1, 7%2}]¥, {-x1,~%2}) | k € No};

= X, eventually activates;
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Liveness and Safety

= Are there LT properties that are both safety and liveness properties?
Yes! But only one, (2P)w.
= s every LT property either a safety property or a liveness property?

No, but every LT property is an intersection of a safety and a
liveness property.

EXAMPLE:

X1 UX2

= X stays active until x, activates;

Lsare such that

MinBad(Lsafe) = {([{x1, 7%2}]¥, {-x1,~%2}) | k € No};
= X, eventually activates;

Ljive given by F(x2);
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Decomposition Theorem

For any LT property L, there exists a safety property Lsar and a liveness
property Ljve such that L = L N Lije.

First, distributivity of union over closure:

closure(L) U closure(L’) = closure(L U L")
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Decomposition Theorem

For any LT property L, there exists a safety property Lsar and a liveness
property Ljve such that L = L N Lije.

First, distributivity of union over closure:

closure(L) U closure(L’) = closure(L U L")

Decomposition Theorem proof by construction:

L = closure(L) N (L U ((2P)w \ Closure(/-)))

‘*\/_\J

L‘AF(; L(i\/(
Aosun (closw« (N= closun ()
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Finite Automata
A nondeterministic finite automaton (NFA) is a tuple
A=(Q,X%,d, Q, F) where:
= @ is a finite set of states;
» Y is an alphabet (for us ¥ = 2F);
» 5 Q x X — 29 s a transition function;
= (o C Q is a set of initial states;

» F C Q is the set of accepting/final states;

Given a finite word w = wiws ... w, € £*, arun of A for w is a
sequence of states (qo, g1, - - ., gn) such that:

= qo € Qu;

» Forall 0 <i< n, giy1 € 5(qi, wir1) (we write g; RUAEN Git1);

A run is accepting if it ends in a final state (g, € F).
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Regular Languages

An NFA A = (Q, X, 0, Qp, F) defines a language of accepted words
L(A) = {w € I*| there exists an accepting run of A for w}.

We say the language L(.A) is accepted by the automaton A.

A language L which is accepted by some NFA A, L = L(.A), is called
regular.

Boolean Networks in Systems Life Sciences 13/19



Regular Languages

An NFA A = (Q, X, 0, Qp, F) defines a language of accepted words
L(A) = {w € I*| there exists an accepting run of A for w}.

We say the language L(.A) is accepted by the automaton A.

A language L which is accepted by some NFA A, L = L(.A), is called
regular.

EXAMPLE:
L((a| b)*b(a| b)) for X = {a, b}
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Regular Languages

An NFA A = (Q, X, 0, Qp, F) defines a language of accepted words
L(A) = {w € I*| there exists an accepting run of A for w}.

We say the language L(.A) is accepted by the automaton A.

A language L which is accepted by some NFA A, L = L(.A), is called
regular.

EXAMPLE:

L((a| b)*b(a| b)) for X = {a, b}

a
a
CJ
- W @)
(O b

b
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Regular Safety Properties

A safety property Lg.re is regular, if the language Bad(Ls.r) is regular,
that is, if there exists an NFA A such that L(.A) = Bad(Lsafe).

Bad(Lsare) is regular if and only if MinBad(Ls.z) is regular.
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Regular Safety Properties

A safety property Lg.re is regular, if the language Bad(Ls.r) is regular,
that is, if there exists an NFA A such that L(.A) = Bad(Lsafe).

Bad(Lsare) is regular if and only if MinBad(Ls.z) is regular.

EXAMPLE:

G ((—|X2 A X(Xz)) = X1)
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Regular Safety Properties

A safety property Lg.re is regular, if the language Bad(Ls.r) is regular,
that is, if there exists an NFA A such that L(.A) = Bad(Lsafe).

Bad(Lsare) is regular if and only if MinBad(Ls.z) is regular.

EXAMPLE:

G ((—|X2 A X(Xg)) = X1)

. SIAND. )

X9
® (@)

X1 N\ X9

X1V Xo X1 A TXo
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Model Checking Regular Safety Properties

Let 7 = (S,—,/, P,a) be a transition system and let

A= (Q,2P,68,Qy, F) an NFA such that QN F = (.

Then their product is a transition system 7 ® A= (S, =/, I', P/, o)
where:

= S=5xQ;
» ='C(SxQ)x(Sx Q) such that

a(x’)

(x,9) =~ (X,¢)ex—=xNg—q,;

. /'—{(X,QHXE//\HQOEQO,QOﬂQ};
= PP=Q;
= o/ S x Q—29such that o': (x,q) — {q};
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Model Checking Regular Safety Properties

Let 7 = (S,—,/, P,a) be a transition system and let
A= (Q,2P,68,Qy, F) an NFA such that QN F = (.

Then their product is a transition system 7 ® A= (S, =/, I', P/, o)
where:

= S=5xQ;
» ='C(SxQ)x(Sx Q) such that

a(x’)

(x,9) =~ (X,¢)ex—=xNg—q,;

= /= {(X,Q) | x € 1A 3q0 € Qo qo ﬂ>q};
= PP=Q
= o/ S x Q—29such that o': (x,q) — {q};
Given a regular safety property Ls,fe and an NFA A such that

L(A) = MinBad(Lsafe):

T E Loare <= TOA|= Liny = {Po, P1, P+ € (2P)" | Vi € No, P; |5 —F}
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Bichi Automata
A nondeterministic Biichi automaton (NBA) is a tuple
A=(Q,X%,d, Q, F) where:
= @ is a finite set of states;
= ¥ is an alphabet (for us ¥ = 2F);
» 5 Qx X — 29 s a transition function;
= (o C Q is a set of initial states;

» F C Q is the set of accepting/final states;

Given an infinite word o0 = ggo102--- € X%, a run of A for o is an
infinite sequence of states (qo, g1, G2, - - . ) such that:

= qo € Qu;

= Forall0<i, g; Z git1;

A run is accepting if it visits an accepting state infinitely often.
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w-Regular Languages

A Biichi automaton A = (Q, L, d, Qo, F) defines a language of accepted
words L(A) = {o € X¥| there exists an accepting run of A for o}.

We say the language L(.A) is accepted by the automaton A.

A language L which is accepted by some Biichi automaton A, L = L(A),
is called w-regular.
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w-Regular Languages

A Biichi automaton A = (Q, L, d, Qo, F) defines a language of accepted
words L(A) = {o € X¥| there exists an accepting run of A for o}.

We say the language L(.A) is accepted by the automaton A.

A language L which is accepted by some Biichi automaton A, L = L(A),
is called w-regular.

EXAMPLE:
L(ath(b* | ba™b)¥) for ¥ = {a, b}
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w-Regular Languages

A Biichi automaton A = (Q, L, d, Qo, F) defines a language of accepted
words L(A) = {o € X¥| there exists an accepting run of A for o}.

We say the language L(.A) is accepted by the automaton A.

A language L which is accepted by some Biichi automaton A, L = L(A),
is called w-regular.

EXAMPLE:

L(ath(b* | ba™b)¥) for ¥ = {a, b}

(ar)
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Persistence Properties

An LT property L, is a persistence property if there exists a
propositional logic formula ® over the atomic propositions P, such that:

Lpers = { PoP1Py - € (2°)° | 3j € No, Vi = j, P; |= @}

The persistence property Lpers is given by the LTL formula F(G(®)).

T = Lpers can be verified by searching for “lasso”, a reachable state x
such that x [~ ® which lies on a cycle.
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Persistence Properties

An LT property L, is a persistence property if there exists a
propositional logic formula ® over the atomic propositions P, such that:

Lpers = { PoP1Py - € (2°)° | 3j € No, Vi = j, P; |= @}

The persistence property Lpers is given by the LTL formula F(G(®)).

T = Lpers can be verified by searching for “lasso”, a reachable state x
such that x [~ ® which lies on a cycle.

EXAMPLE:

F(G(Xl V X2))
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Model Checking w-Regular Properties

Let T = (S, —, [, P,a) be a transition system and let
A=(Q,2F,6, Q, F) a non-blocking Biichi automaton.

Then their product is a transition system 7 @ A= (S x Q,—', /", Q, )
where:

= =/C (5% Q) x (S x Q) such that

a(x’)

(x,9) = (X,¢) & x =X Ng—= ¢
" I/:{(X,q)|X€I/\3q0€Qo,C]oMQ};

= a1 Sx Q— 29 such that o: (x,q) — {q};
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Model Checking w-Regular Properties

Let T = (S, —, [, P,a) be a transition system and let
A=(Q,2F,6, Q, F) a non-blocking Biichi automaton.

Then their product is a transition system 7 @ A= (S x Q,—', /", Q, )

where:

= =/C (5% Q) x (S x Q) such that

a(x’)

(x,9) = (X,¢) & x =X Ng—= ¢
" I/:{(X,q)|X€I/\3q0€Qo,qoﬂQ};

= a1 Sx Q— 29 such that o: (x,q) — {q};

Given an w-regular property L and a Biichi automaton A such that

L(A) = 27)7\ L:

T L= TOAE Lpes = {PoP1Ps -+ € (2P)* | 3j € No, Vi > j, Py |= —F}
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