

Model Checking

Juri Kolčák

Friday 9th January, 2026

Automated Verification

Model checking is a general framework for computationally verifying linear-time properties (specified in temporal logic), on a transition system.

Recall that for a Boolean network of dimension n , the transition system is of size 2^n . Automated verification is therefore paramount.

Model checking is typically “the last line of defence”, and one would attempt to reduce the transition system beforehand.

- Static analysis;
- Model reduction (trap spaces, merging/removing variables, . . .);
- Decomposition;
- Symbolic representation;
- . . .

Kripke Structure

A **Kripke structure** is a tuple $\mathcal{T} = (S, \rightarrow, I, P, \alpha)$ consisting of:

- A transition system (S, \rightarrow) ;
- A set of initial states $I \subseteq S$;
- A set of atomic propositions P ;
- A function $\alpha: S \rightarrow 2^P$, mapping each configuration to a set of atomic propositions.

Kripke Structure

A **Kripke structure** is a tuple $\mathcal{T} = (S, \rightarrow, I, P, \alpha)$ consisting of:

- A transition system (S, \rightarrow) ;
- A set of initial states $I \subseteq S$;
- A set of atomic propositions P ;
- A function $\alpha: S \rightarrow 2^P$, mapping each configuration to a set of atomic propositions.

For each trace $\sigma = (x^0, x^1, x^2, \dots)$ of the transition system (S, \rightarrow) , the corresponding trace of the Kripke structure \mathcal{T} is $\pi = (\alpha(x^0), \alpha(x^1), \alpha(x^2), \dots)$.

A trace σ is **initial**, if $x^0 \in I$.

$S(\mathcal{T})$ is the set of all the initial and infinite (maximal) traces of the Kripke structure.

Linear-time Properties

A linear-time (LT) property is a language $L \subseteq (2^P)^\omega$ of infinite words over the alphabet $\Sigma = 2^P$.

L is the language of all the “good” behaviours, that satisfy the desired property.

A transition system (Kripke structure) \mathcal{T} satisfies the LT property L , $\mathcal{T} \models L$, if and only if $\mathcal{S}(\mathcal{T}) \subseteq L$.

Invariant Properties

A property L_{inv} is an **invariant** if there exists a propositional logic formula Φ over the atomic propositions P , the invariant condition, such that:

$$L_{inv} = \{P_0P_1P_2 \cdots \in (2^P)^\omega \mid \forall i \in \mathbb{N}_0, P_i \models \Phi\}$$

Let $\mathcal{R}(\mathcal{T}) = \{\mathbf{x} \in S \mid \exists \mathbf{y} \in I, \mathbf{y} \rightarrow^* \mathbf{x}\}$ be the set of all configurations reachable from at least one of the initial configurations.

A transition system \mathcal{T} satisfies the invariant property L_{inv} , $\mathcal{T} \models L_{inv}$, if and only if for all $\mathbf{x} \in \mathcal{R}(\mathcal{T})$, $\mathbf{x} \models \Phi$.

Invariant Properties

A property L_{inv} is an **invariant** if there exists a propositional logic formula Φ over the atomic propositions P , the invariant condition, such that:

$$L_{inv} = \{P_0P_1P_2 \cdots \in (2^P)^\omega \mid \forall i \in \mathbb{N}_0, P_i \models \Phi\}$$

Let $\mathcal{R}(\mathcal{T}) = \{\mathbf{x} \in S \mid \exists \mathbf{y} \in I, \mathbf{y} \rightarrow^* \mathbf{x}\}$ be the set of all configurations reachable from at least one of the initial configurations.

A transition system \mathcal{T} satisfies the invariant property L_{inv} , $\mathcal{T} \models L_{inv}$, if and only if for all $\mathbf{x} \in \mathcal{R}(\mathcal{T})$, $\mathbf{x} \models \Phi$.

EXAMPLE:

$$\mathbf{G}(\mathbf{x}_1 \vee \mathbf{x}_2)$$

Safety Properties

In simple terms, safety properties say: “something bad never happens”.

An LT property L_{safe} is a **safety** property if for all words $\sigma \in (2^P)^\omega \setminus L_{safe}$, there exists a finite prefix $\hat{\sigma}$ of σ which is not prefix of any word in L_{safe} , $L_{safe} \cap \{\sigma' \in (2^P)^\omega \mid \hat{\sigma} \text{ is a prefix of } \sigma'\} = \emptyset$.

Any such finite word $\hat{\sigma}$ is a **bad prefix** for the safety property L_{safe} , describing a part of behaviour in which the safety property is violated, or that guarantees its future violation.

A bad prefix $\hat{\sigma}$ is **minimal** if there is no proper prefix of $\hat{\sigma}$ which is also bad for L_{safe} .

We use $\text{Bad}(L_{safe})$ to denote the set of all bad prefixes of L_{safe} , and $\text{MinBad}(L_{safe})$ to denote the set of all minimal bad prefixes of L_{safe} .

Safety Properties – Example

Every invariant property is a safety property.

Consider a Boolean network of dimension at least 2. The following LTL formula defines a safety property:

$$\mathbf{G}((\neg x_2 \wedge \mathbf{X}(x_2)) \Rightarrow x_1)$$

Safety Properties – Example

Every invariant property is a safety property.

Consider a Boolean network of dimension at least 2. The following LTL formula defines a safety property:

$$\mathbf{G}((\neg x_2 \wedge \mathbf{X}(x_2)) \Rightarrow x_1)$$

$$\pi_1 = (\{x_1\}, \{x_1, x_2\}, \{x_1, x_2\}, \dots);$$

Safety Properties – Example

Every invariant property is a safety property.

Consider a Boolean network of dimension at least 2. The following LTL formula defines a safety property:

$$\mathbf{G}((\neg x_2 \wedge \mathbf{X}(x_2)) \Rightarrow x_1)$$

$$\pi_1 = (\{x_1\}, \{x_1, x_2\}, \{x_1, x_2\}, \dots);$$

$$\pi_2 = (\{x_1\}, \{x_2\}, \{x_2\}, \dots);$$

Safety Properties – Example

Every invariant property is a safety property.

Consider a Boolean network of dimension at least 2. The following LTL formula defines a safety property:

$$\mathbf{G}((\neg x_2 \wedge \mathbf{X}(x_2)) \Rightarrow x_1)$$

$$\pi_1 = (\{x_1\}, \{x_1, x_2\}, \{x_1, x_2\}, \dots);$$

$$\pi_2 = (\{x_1\}, \{x_2\}, \{x_2\}, \dots);$$

$$\pi_3 = (\{x_1\}, \emptyset, \{x_2\}, \{x_2\}, \dots);$$

Safety Properties – Example

Every invariant property is a safety property.

Consider a Boolean network of dimension at least 2. The following LTL formula defines a safety property:

$$\mathbf{G}((\neg x_2 \wedge \mathbf{X}(x_2)) \Rightarrow x_1)$$

$$\pi_1 = (\{x_1\}, \{x_1, x_2\}, \{x_1, x_2\}, \dots);$$

$$\pi_2 = (\{x_1\}, \{x_2\}, \{x_2\}, \dots);$$

$$\pi_3 = (\{x_1\}, \emptyset, \{x_2\}, \{x_2\}, \dots);$$

Safety Properties – Example

Every invariant property is a safety property.

Consider a Boolean network of dimension at least 2. The following LTL formula defines a safety property:

$$\mathbf{G}((\neg x_2 \wedge \mathbf{X}(x_2)) \Rightarrow x_1)$$

$$\pi_1 = (\{x_1\}, \{x_1, x_2\}, \{x_1, x_2\}, \dots);$$

$$\pi_2 = (\{x_1\}, \{x_2\}, \{x_2\}, \dots);$$

$$\pi_3 = (\{x_1\}, \emptyset, \{x_2\}, \{x_2\}, \dots);$$

$$\pi_4 = (\{x_1\}, \{x_2\}, \emptyset, \{x_1, x_2\}, \{x_1, x_2\}, \dots);$$

Safety Properties – Example

Every invariant property is a safety property.

Consider a Boolean network of dimension at least 2. The following LTL formula defines a safety property:

$$\mathbf{G}((\neg x_2 \wedge \mathbf{X}(x_2)) \Rightarrow x_1)$$

$$\pi_1 = (\{x_1\}, \{x_1, x_2\}, \{x_1, x_2\}, \dots);$$

$$\pi_2 = (\{x_1\}, \{x_2\}, \{x_2\}, \dots);$$

$$\pi_3 = (\{x_1\}, \emptyset, \{x_2\}, \{x_2\}, \dots);$$

$$\pi_4 = (\{x_1\}, \{x_2\}, \emptyset, \{x_1, x_2\}, \{x_1, x_2\}, \dots);$$

Safety Properties – Alternative Definition

Let $\sigma \in (2^P)^\omega$ be an arbitrary word, we formally define the set of all finite prefixes of σ as follows:

$$\text{pref}(\sigma) \triangleq \{(\sigma^0, \sigma^1, \dots, \sigma^{k-1}, \sigma^k) \mid k \in \mathbb{N}_0\}$$

The definition of finite prefixes extends naturally to languages:

$$\text{pref}(L) \triangleq \bigcup_{\sigma \in L} \text{pref}(\sigma)$$

Finally, we define the **closure** of a language to contain all the words that share finite prefixes with the language:

$$\text{closure}(L) \triangleq \left\{ \sigma \in (2^P)^\omega \mid \text{pref}(\sigma) \subseteq \text{pref}(L) \right\}$$

$$L \subseteq \text{closure}(L)$$

A property L_{safe} is a safety property if and only if $\text{closure}(L_{\text{safe}}) = L_{\text{safe}}$.

Liveness Properties

In simple terms, liveness properties say: “something good eventually happens”.

An LT property L_{live} is a **liveness** property, if and only if
 $\text{pref}(L_{live}) = (2^P)^*$. $\text{closure}(L_{live}) = (2^P)^\omega$

Liveness Properties

In simple terms, liveness properties say: “something good eventually happens”.

An LT property L_{live} is a **liveness** property, if and only if $\text{pref}(L_{live}) = (2^P)^*$.

EXAMPLE:

$$\mathbf{F}(\neg x_1 \wedge x_2)$$

Liveness and Safety

- Are there LT properties that are both safety and liveness properties?
- Is every LT property either a safety property or a liveness property?

Liveness and Safety

- Are there LT properties that are both safety and liveness properties?
Yes! But only one, $(2^P)^\omega$.
- Is every LT property either a safety property or a liveness property?

Liveness and Safety

- Are there LT properties that are both safety and liveness properties?
Yes! But only one, $(2^P)^\omega$.
- Is every LT property either a safety property or a liveness property?
No, but every LT property is an intersection of a safety and a liveness property.

Liveness and Safety

- Are there LT properties that are both safety and liveness properties?
Yes! But only one, $(2^P)^\omega$.
- Is every LT property either a safety property or a liveness property?
No, but every LT property is an intersection of a safety and a liveness property.

EXAMPLE:

$x_1 \mathbf{U} x_2$

- x_1 stays active until x_2 activates;
- x_2 eventually activates;

Liveness and Safety

- Are there LT properties that are both safety and liveness properties?
Yes! But only one, $(2^P)^\omega$.
- Is every LT property either a safety property or a liveness property?
No, but every LT property is an intersection of a safety and a liveness property.

EXAMPLE:

$x_1 \mathbf{U} x_2$

- x_1 stays active until x_2 activates;
 L_{safe} such that
 $\text{MinBad}(L_{safe}) = \{([\{x_1, \neg x_2\}]^k, \{\neg x_1, \neg x_2\}) \mid k \in \mathbb{N}_0\}$;
- x_2 eventually activates;

Liveness and Safety

- Are there LT properties that are both safety and liveness properties?
Yes! But only one, $(2^P)^\omega$.
- Is every LT property either a safety property or a liveness property?
No, but every LT property is an intersection of a safety and a liveness property.

EXAMPLE:

$x_1 \mathbf{U} x_2$

- x_1 stays active until x_2 activates;
 L_{safe} such that
 $\text{MinBad}(L_{safe}) = \{([\{x_1, \neg x_2\}]^k, \{\neg x_1, \neg x_2\}) \mid k \in \mathbb{N}_0\}$;
- x_2 eventually activates;
 L_{live} given by $\mathbf{F}(x_2)$;

Decomposition Theorem

For any LT property L , there exists a safety property L_{safe} and a liveness property L_{live} such that $L = L_{\text{safe}} \cap L_{\text{live}}$.

First, distributivity of union over closure:

$$\text{closure}(L) \cup \text{closure}(L') = \text{closure}(L \cup L')$$

$$\text{closure}(L) \cup \text{closure}(L') \subseteq \text{closure}(L \cup L') \quad z \in z' \Rightarrow \text{closure}(z) \subseteq \text{closure}(z')$$

$$\begin{aligned} L &\subseteq L \cup L' \\ \text{closure}(L) &\subseteq \text{closure}(L \cup L') \\ L' &\subseteq L \cup L' \\ \text{closure}(L') &\subseteq \text{closure}(L \cup L') \end{aligned}$$

$$\text{closure}(L \cup L') \subseteq \text{closure}(L) \cup \text{closure}(L')$$

$$\text{we need: } \text{pref}(G) \subseteq \text{pref}(L \cup L') \Rightarrow \text{pref}(G) \subseteq \text{pref}(L) \cup \text{pref}(L') \subseteq \text{pref}(L')$$

$\text{pref}(G)$ is an infinite set $\text{pref}(L) \cup \text{pref}(L')$
either $\text{pref}(G) \cap \text{pref}(L)$ is infinite or $\text{pref}(G) \cap \text{pref}(L')$ is infinite or both

W.l.o.g. $\text{pref}(G) \cap \text{pref}(L)$ is infinite

Now by contradiction: $\text{pref}(G) \not\subseteq \text{pref}(L)$

$\exists k \in \mathbb{N}_0$ s.t. $\hat{G} = (G_0, \dots, G_k)$ is s.t. $\hat{G} \notin \text{pref}(L)$

However $\text{pref}(G) \cap \text{pref}(L)$ is infinite \Rightarrow there has to infinitely many prefixes of \hat{G} longer than \hat{G} that are in $\text{pref}(L)$

Since \hat{G} is a prefix of any such longer prefix of \hat{G} , \hat{G} must also be in $\text{pref}(L)$ which is a contradiction with $\text{pref}(G) \not\subseteq \text{pref}(L)$

Decomposition Theorem

For any LT property L , there exists a safety property L_{safe} and a liveness property L_{live} such that $L = L_{\text{safe}} \cap L_{\text{live}}$.

First, distributivity of union over closure:

$$\text{closure}(L) \cup \text{closure}(L') = \text{closure}(L \cup L')$$

Decomposition Theorem proof by construction:

$$L = \text{closure}(L) \cap \left(L \cup \left((2^P)^\omega \setminus \text{closure}(L) \right) \right)$$

$\underbrace{L}_{L_{\text{safe}}}$ \quad $\underbrace{(2^P)^\omega \setminus \text{closure}(L)}_{L_{\text{live}}}$

$$\text{closure}(\text{closure}(L)) = \text{closure}(L)$$

Finite Automata

A **nondeterministic finite automaton** (NFA) is a tuple $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ where:

- Q is a finite set of states;
- Σ is an alphabet (for us $\Sigma = 2^P$);
- $\delta: Q \times \Sigma \rightarrow 2^Q$ is a transition function;
- $Q_0 \subseteq Q$ is a set of initial states;
- $F \subseteq Q$ is the set of accepting/final states;

Given a finite word $w = w_1 w_2 \dots w_n \in \Sigma^*$, a **run** of \mathcal{A} for w is a sequence of states (q_0, q_1, \dots, q_n) such that:

- $q_0 \in Q_0$;
- For all $0 \leq i < n$, $q_{i+1} \in \delta(q_i, w_{i+1})$ (we write $q_i \xrightarrow{w_{i+1}} q_{i+1}$);

A run is **accepting** if it ends in a final state ($q_n \in F$).

Regular Languages

An NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ defines a language of accepted words $L(\mathcal{A}) = \{w \in \Sigma^* \mid \text{there exists an accepting run of } \mathcal{A} \text{ for } w\}$.

We say the language $L(\mathcal{A})$ is **accepted** by the automaton \mathcal{A} .

A language L which is accepted by some NFA \mathcal{A} , $L = L(\mathcal{A})$, is called **regular**.

Regular Languages

An NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ defines a language of accepted words $L(\mathcal{A}) = \{w \in \Sigma^* \mid \text{there exists an accepting run of } \mathcal{A} \text{ for } w\}$.

We say the language $L(\mathcal{A})$ is **accepted** by the automaton \mathcal{A} .

A language L which is accepted by some NFA \mathcal{A} , $L = L(\mathcal{A})$, is called **regular**.

EXAMPLE:

$L((a \mid b)^* b(a \mid b))$ for $\Sigma = \{a, b\}$

Regular Languages

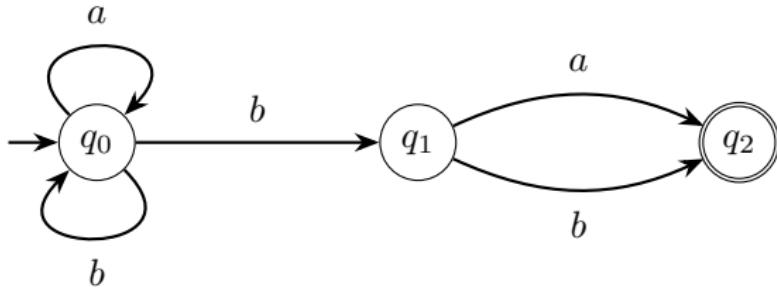
An NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ defines a language of accepted words $L(\mathcal{A}) = \{w \in \Sigma^* \mid \text{there exists an accepting run of } \mathcal{A} \text{ for } w\}$.

We say the language $L(\mathcal{A})$ is **accepted** by the automaton \mathcal{A} .

A language L which is accepted by some NFA \mathcal{A} , $L = L(\mathcal{A})$, is called **regular**.

EXAMPLE:

$L((a \mid b)^* b (a \mid b))$ for $\Sigma = \{a, b\}$



Regular Safety Properties

A safety property L_{safe} is regular, if the language $\text{Bad}(L_{safe})$ is regular, that is, if there exists an NFA \mathcal{A} such that $L(\mathcal{A}) = \text{Bad}(L_{safe})$.

$\text{Bad}(L_{safe})$ is regular if and only if $\text{MinBad}(L_{safe})$ is regular.

Regular Safety Properties

A safety property L_{safe} is regular, if the language $\text{Bad}(L_{safe})$ is regular, that is, if there exists an NFA \mathcal{A} such that $L(\mathcal{A}) = \text{Bad}(L_{safe})$.

$\text{Bad}(L_{safe})$ is regular if and only if $\text{MinBad}(L_{safe})$ is regular.

EXAMPLE:

$$\mathbf{G} ((\neg x_2 \wedge \mathbf{X}(x_2)) \Rightarrow x_1)$$

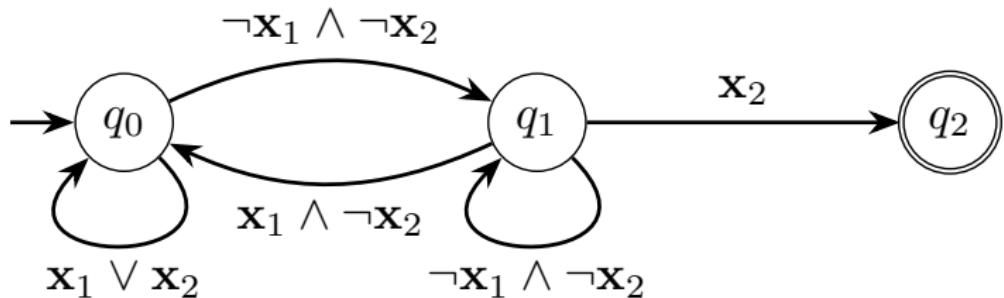
Regular Safety Properties

A safety property L_{safe} is regular, if the language $\text{Bad}(L_{safe})$ is regular, that is, if there exists an NFA \mathcal{A} such that $L(\mathcal{A}) = \text{Bad}(L_{safe})$.

$\text{Bad}(L_{safe})$ is regular if and only if $\text{MinBad}(L_{safe})$ is regular.

EXAMPLE:

$$\mathbf{G} ((\neg x_2 \wedge \mathbf{X}(x_2)) \Rightarrow x_1)$$



Model Checking Regular Safety Properties

Let $\mathcal{T} = (S, \rightarrow, I, P, \alpha)$ be a transition system and let $\mathcal{A} = (Q, 2^P, \delta, Q_0, F)$ an NFA such that $Q_0 \cap F = \emptyset$.

Then their product is a transition system $\mathcal{T} \otimes \mathcal{A} = (S', \rightarrow', I', P', \alpha')$ where:

- $S' = S \times Q$;
- $\rightarrow' \subseteq (S \times Q) \times (S \times Q)$ such that $(x, q) \rightarrow (x', q') \Leftrightarrow x \rightarrow x' \wedge q \xrightarrow{\alpha(x')} q'$;
- $I' = \left\{ (x, q) \mid x \in I \wedge \exists q_0 \in Q_0, q_0 \xrightarrow{\alpha(x)} q \right\}$;
- $P' = Q$;
- $\alpha': S \times Q \rightarrow 2^Q$ such that $\alpha': (x, q) \mapsto \{q\}$;

Model Checking Regular Safety Properties

Let $\mathcal{T} = (S, \rightarrow, I, P, \alpha)$ be a transition system and let $\mathcal{A} = (Q, 2^P, \delta, Q_0, F)$ an NFA such that $Q_0 \cap F = \emptyset$.

Then their product is a transition system $\mathcal{T} \otimes \mathcal{A} = (S', \rightarrow', I', P', \alpha')$ where:

- $S' = S \times Q$;
- $\rightarrow' \subseteq (S \times Q) \times (S \times Q)$ such that $(x, q) \rightarrow (x', q') \Leftrightarrow x \rightarrow x' \wedge q \xrightarrow{\alpha(x')} q'$;
- $I' = \left\{ (x, q) \mid x \in I \wedge \exists q_0 \in Q_0, q_0 \xrightarrow{\alpha(x)} q \right\}$;
- $P' = Q$;
- $\alpha': S \times Q \rightarrow 2^Q$ such that $\alpha': (x, q) \mapsto \{q\}$;

Given a regular safety property L_{safe} and an NFA \mathcal{A} such that $L(\mathcal{A}) = \text{MinBad}(L_{safe})$:

$$\mathcal{T} \models L_{safe} \iff \mathcal{T} \otimes \mathcal{A} \models L_{inv} = \{P_0, P_1, P_2 \dots \in (2^P)^\omega \mid \forall i \in \mathbb{N}_0, P_i \models \neg F\}$$

Büchi Automata

A **nondeterministic Büchi automaton** (NBA) is a tuple $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ where:

- Q is a finite set of states;
- Σ is an alphabet (for us $\Sigma = 2^P$);
- $\delta: Q \times \Sigma \rightarrow 2^Q$ is a transition function;
- $Q_0 \subseteq Q$ is a set of initial states;
- $F \subseteq Q$ is the set of accepting/final states;

Given an infinite word $\sigma = \sigma_0\sigma_1\sigma_2\cdots \in \Sigma^\omega$, a **run** of \mathcal{A} for σ is an infinite sequence of states (q_0, q_1, q_2, \dots) such that:

- $q_0 \in Q_0$;
- For all $0 \leq i$, $q_i \xrightarrow{\sigma_i} q_{i+1}$;

A run is **accepting** if it visits an accepting state infinitely often.

ω -Regular Languages

A Büchi automaton $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ defines a language of accepted words $L(\mathcal{A}) = \{\sigma \in \Sigma^\omega \mid \text{there exists an accepting run of } \mathcal{A} \text{ for } \sigma\}$.

We say the language $L(\mathcal{A})$ is **accepted** by the automaton \mathcal{A} .

A language L which is accepted by some Büchi automaton \mathcal{A} , $L = L(\mathcal{A})$, is called **ω -regular**.

ω -Regular Languages

A Büchi automaton $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ defines a language of accepted words $L(\mathcal{A}) = \{\sigma \in \Sigma^\omega \mid \text{there exists an accepting run of } \mathcal{A} \text{ for } \sigma\}$.

We say the language $L(\mathcal{A})$ is **accepted** by the automaton \mathcal{A} .

A language L which is accepted by some Büchi automaton \mathcal{A} , $L = L(\mathcal{A})$, is called **ω -regular**.

EXAMPLE:

$L(a^+b(b^+ \mid ba^+b)^\omega)$ for $\Sigma = \{a, b\}$

ω -Regular Languages

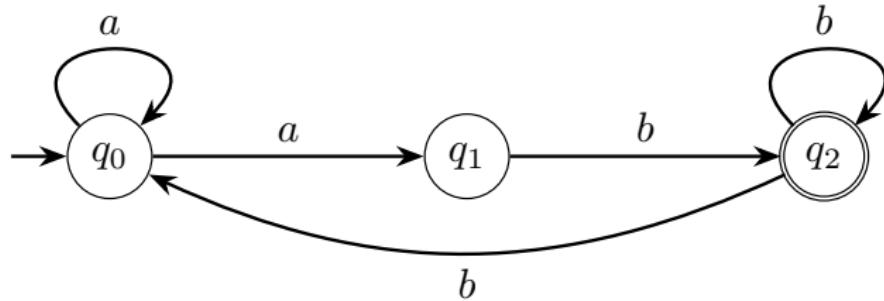
A Büchi automaton $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ defines a language of accepted words $L(\mathcal{A}) = \{\sigma \in \Sigma^\omega \mid \text{there exists an accepting run of } \mathcal{A} \text{ for } \sigma\}$.

We say the language $L(\mathcal{A})$ is **accepted** by the automaton \mathcal{A} .

A language L which is accepted by some Büchi automaton \mathcal{A} , $L = L(\mathcal{A})$, is called **ω -regular**.

EXAMPLE:

$L(a^+b(b^+ \mid ba^+b)^\omega)$ for $\Sigma = \{a, b\}$



Persistence Properties

An LT property L_{pers} is a **persistence** property if there exists a propositional logic formula Φ over the atomic propositions P , such that:

$$L_{pers} = \left\{ P_0 P_1 P_2 \cdots \in (2^P)^\omega \mid \exists j \in \mathbb{N}_0, \forall i \geq j, P_i \models \Phi \right\}$$

The persistence property L_{pers} is given by the LTL formula $\mathbf{F}(\mathbf{G}(\Phi))$.

$\mathcal{T} \models L_{pers}$ can be verified by searching for “lasso”, a reachable state \mathbf{x} such that $\mathbf{x} \not\models \Phi$ which lies on a cycle.

Persistence Properties

An LT property L_{pers} is a **persistence** property if there exists a propositional logic formula Φ over the atomic propositions P , such that:

$$L_{pers} = \left\{ P_0 P_1 P_2 \cdots \in (2^P)^\omega \mid \exists j \in \mathbb{N}_0, \forall i \geq j, P_i \models \Phi \right\}$$

The persistence property L_{pers} is given by the LTL formula $\mathbf{F}(\mathbf{G}(\Phi))$.

$\mathcal{T} \models L_{pers}$ can be verified by searching for “lasso”, a reachable state \mathbf{x} such that $\mathbf{x} \not\models \Phi$ which lies on a cycle.

EXAMPLE:

$$\mathbf{F}(\mathbf{G}(x_1 \vee x_2))$$

Model Checking ω -Regular Properties

Let $\mathcal{T} = (S, \rightarrow, I, P, \alpha)$ be a transition system and let $\mathcal{A} = (Q, 2^P, \delta, Q_0, F)$ a non-blocking Büchi automaton.

Then their product is a transition system $\mathcal{T} \otimes \mathcal{A} = (S \times Q, \rightarrow', I', Q, \alpha')$ where:

- $\rightarrow' \subseteq (S \times Q) \times (S \times Q)$ such that $(x, q) \rightarrow (x', q') \Leftrightarrow x \rightarrow x' \wedge q \xrightarrow{\alpha(x')} q'$;
- $I' = \left\{ (x, q) \mid x \in I \wedge \exists q_0 \in Q_0, q_0 \xrightarrow{\alpha(x)} q \right\}$;
- $\alpha': S \times Q \rightarrow 2^Q$ such that $\alpha': (x, q) \mapsto \{q\}$;

Model Checking ω -Regular Properties

Let $\mathcal{T} = (S, \rightarrow, I, P, \alpha)$ be a transition system and let $\mathcal{A} = (Q, 2^P, \delta, Q_0, F)$ a non-blocking Büchi automaton.

Then their product is a transition system $\mathcal{T} \otimes \mathcal{A} = (S \times Q, \rightarrow', I', Q, \alpha')$ where:

- $\rightarrow' \subseteq (S \times Q) \times (S \times Q)$ such that $(x, q) \rightarrow (x', q') \Leftrightarrow x \rightarrow x' \wedge q \xrightarrow{\alpha(x')} q'$;
- $I' = \left\{ (x, q) \mid x \in I \wedge \exists q_0 \in Q_0, q_0 \xrightarrow{\alpha(x)} q \right\}$;
- $\alpha': S \times Q \rightarrow 2^Q$ such that $\alpha': (x, q) \mapsto \{q\}$;

Given an ω -regular property L and a Büchi automaton \mathcal{A} such that $L(\mathcal{A}) = (2^P)^\omega \setminus L$:

$$\mathcal{T} \models L \iff \mathcal{T} \otimes \mathcal{A} \models L_{pers} = \{P_0 P_1 P_2 \dots \in (2^P)^\omega \mid \exists j \in \mathbb{N}_0, \forall i \geq j, P_i \models \neg F\}$$